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Abstract—We present the results of a recent large-scale sub-
jective study of video quality on a collection of videos distorted
by a variety of application-relevant processes. Methods to as-
sess the visual quality of digital videos as perceived by human
observers are becoming increasingly important, due to the large
number of applications that target humans as the end users of
video. Owing to the many approaches to video quality assessment
(VQA) that are being developed, there is a need for a diverse
independent public database of distorted videos and subjective
scores that is freely available. The resulting Laboratory for Image
and Video Engineering (LIVE) Video Quality Database contains
150 distorted videos (obtained from ten uncompressed reference
videos of natural scenes) that were created using four different
commonly encountered distortion types. Each video was assessed
by 38 human subjects, and the difference mean opinion scores
(DMOS) were recorded. We also evaluated the performance of
several state-of-the-art, publicly available full-reference VQA
algorithms on the new database. A statistical evaluation of the
relative performance of these algorithms is also presented. The
database has a dedicated web presence that will be maintained as
long as it remains relevant and the data is available online.

Index Terms—Full reference, human visual system, LIVE video
quality database, perceptual quality assessment, video quality, vi-
sual perception.

I. INTRODUCTION

D IGITAL videos are increasingly finding their way into
the day-to-day lives of people via the explosion of video

applications such as digital television, digital cinema, Internet
videos, video teleconferencing, video-sharing services such as
Youtube, Video On Demand (VoD), home videos, and so on.
Digital videos typically pass through several processing stages
before they reach the end user of the video. Most often, this end
user is a human observer. The effect of most processing stages
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is to degrade the quality of the video that passes through it, al-
though certain processing stages (for example, in consumer de-
vices) attempt to improve quality. Methods for evaluating video
quality play a critical role in quality monitoring to maintain
Quality of Service (QoS) requirements; performance evaluation
of video acquisition and display devices; evaluation of video
processing systems for compression, enhancement, error con-
cealment, and so on; and finally, perceptually optimal design of
video processing systems.

The only reliable method to assess the video quality per-
ceived by a human observer is to ask human subjects for their
opinion, which is termed subjective video quality assessment
(VQA). Subjective VQA is impractical for most applica-
tions due to the human involvement in the process. However,
subjective VQA studies provide valuable data to assess the
performance of objective or automatic methods of quality
assessment. In addition to providing the means to evaluate the
performance of state-of-the-art VQA technologies, subjective
studies also enable improvements in the performance of VQA
algorithms toward attaining the ultimate goal of matching
human perception.

In this paper, we first present a study that we conducted
to assess the subjective quality of videos. Our study included
10 uncompressed reference videos of natural scenes and 150
distorted videos (obtained from the references) using four
different distortion types commonly encountered in applica-
tions. Each video was assessed by 38 human subjects in a
single stimulus study with hidden reference removal, where the
subjects scored the video quality on a continuous quality scale.
This study and the resulting video database presented here,
which we call the Laboratory for Image and Video Engineering
(LIVE) Video Quality Database, supplements the widely used
LIVE Image Quality Database for still images [1]. We evaluate
the performance of leading, publicly available objective VQA
algorithms on the new LIVE Video Quality Database by using
standardized measures. This paper builds upon our earlier work
describing the LIVE Video Quality Database [2].

Currently, the only publicly available subjective data that
is widely used by the VQA community comes from the study
conducted by the Video Quality Experts Group (VQEG) as
part of its FR-TV Phase 1 project in 2000 [3]. There have been
significant advances in video processing technology since 2000,
most notably the development of the popular H.264/MPEG-4
AVC compression standard. The test videos in the VQEG
study are not representative of present generation encoders
and communication systems. By contrast, the LIVE Video
Quality Database described here includes videos distorted by
H.264 compression, as well as videos resulting from simulated
transmission of H.264 packetized streams through error prone
communication channels. The VQEG study targeted secondary
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Fig. 1. One frame from each of the ten reference videos used in the study. (a) Pedestrian Area. (b) River Bed. (c) Rush Hour. (d) Tractor. (e) Station. (f) Sunflower.
(g) Blue Sky. (h) Shield (i) Park Run. (j) Mobile & Calendar.

distribution of television, so most of the videos in the VQEG
study are interlaced. Interlaced videos lead to visual artifacts
in the reference as well as distorted videos when they are
displayed in increasingly common progressive scan monitors.
Objective VQA algorithms typically involve multiple pro-
cessing steps which require adjustment to handle interlaced
signals. De-interlacing creates visual artifacts associated with
the particular algorithm used, which is unacceptable in a VQA
framework. Additionally, interlaced videos are not representa-
tive of current trends in the video industry such as multimedia,
IPTV, video viewing on computer monitors, progressive High
Definition Television (HDTV) standards, and so on. Videos
in the LIVE Video Quality Database were all captured in
progressive scan formats, allowing researchers to focus on
developing algorithms for VQA. Further, the VQEG database
was designed to address the needs of secondary distribution
of television and hence, the database spans narrow ranges of
quality scores—indeed, more than half of the sequences are of
very high quality (MPEG-2 encoded at Mbps). Overall,
the VQEG videos exhibit poor perceptual separation, making
it difficult to distinguish the performance of VQA algorithms.
The LIVE Video Quality Database spans a much wider range of
quality—the low-quality videos were designed to be of similar
quality found in streaming video applications on the Internet

(Youtube, wireless videos, live streaming of low-bandwidth
videos, etc.).

Although the VQEG has several other completed and on-
going projects, none of the videos from subsequent studies have
been made public [4], [5]. Only subjective data has been made
available publicly from the VQEG FRTV Phase 2 study and
the videos have not been made public, due to several copyright
and licensing issues [6]. The situation with the VQEG Multi-
media dataset is identical, wherein the VQEG plans to release
only the subjective data in September, 2009 and the videos will
not be released publicly [7]. This is a grave concern, since un-
availability of the VQEG datasets seriously limits the ability
of researchers to benchmark the performance of new, objective
VQA models against the VQEG evaluations. The LIVE Video
Quality Database is publicly available for download from [8] to
facilitate comparative evaluation of newer objective models and
to advance the state-of-the-art in perceptual quality evaluation
systems.

II. DETAILS OF SUBJECTIVE STUDY

A. Source Sequences

We used ten uncompressed, high-quality, source videos of
natural scenes (as opposed to animation, graphics, text, etc.) that
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Fig. 2. (a) MPEG-2 compressed frame (b) H.264 compressed frame (c) IP loss simulated frame (d) Wireless loss simulated frame.

are freely available for download from the Technical University
of Munich [9]. All videos provided by [9] were filmed with pro-
fessional, high-end equipment and converted to digital format
with utmost care, guaranteeing that the reference videos are
distortion free. We only used the progressively scanned videos
in this database, thus avoiding problems with video deinter-
lacing. We used the digital videos provided in High Definition
(HD) YUV 4:2:0 format and none of the videos contain audio
components. However, due to resource limitations when dis-
playing these videos, we downsampled all videos to a resolution
of 768 432 pixels. We chose this resolution to ensure that the
aspect ratio of the HD videos was maintained, thus minimizing
visual distortions. Additionally, this resolution ensures that the
number of rows and columns are multiples of 16, as is often
required by compression systems such as MPEG-2. We down-
sampled each raw video frame by frame using the “imresize”
function in Matlab using bicubic interpolation to minimize dis-
tortions due to aliasing.

Fig. 1 shows one frame of each reference video in the LIVE
Video Quality Database. All videos, except blue sky, are 10 s
long. The blue sky sequence is 8.68 s long. The first seven se-
quences have a frame rate of 25 frames per second, while the re-
maining three (Park run, Shields, and Mobile & Calendar) have
a frame rate of 50 frames per second. A short description of
these videos is provided below.

• Blue Sky—Circular camera motion showing a blue sky and
some trees

• River Bed—Still camera, shows a river bed containing
some pebbles and water

• Pedestrian area—Still camera, shows some people
walking about in a street intersection

• Tractor—Camera pan, shows a tractor moving across some
fields

• Sunflower—Still camera, shows a bee moving over a sun-
flower in close-up

• Rush hour—Still camera, shows rush hour traffic on a street
• Station—Still camera, shows a railway track, a train, and

some people walking across the track
• Park run—Camera pan, a person running across a park
• Shields—Camera pans at first, then becomes still and

zooms in; shows a person walking across a display
pointing at it

• Mobile & Calendar—Camera pan, toy train moving hor-
izontally with a calendar moving vertically in the back-
ground

B. Test Sequences

We created 15 test sequences from each of the reference
sequences using four different distortion processes—MPEG-2
compression, H.264 compression, simulated transmission of
H.264 compressed bitstreams through error-prone IP net-
works, and through error-prone wireless networks. The goal
of our study was to develop a database of videos that will
challenge automatic VQA algorithms. We included diverse
distortion types to test the ability of objective models to predict
visual quality consistently across distortions. Compression
systems such as MPEG-2 and H.264 produce fairly uniform
distortions/quality in the video, both spatially and temporally.
Network losses, however, cause transient distortions in the
video, both spatially and temporally. Fig. 2 shows part of a
frame of the “Pedestrian Area” sequence corrupted by each of
the four distortion types in the LIVE Video Quality Database.
It is clear that the visual appearance of distortion is very dif-
ferent in each of these videos. MPEG-2 and H.264 compressed
videos exhibit typical compression artifacts such as blocking,
blur, ringing and motion compensation mismatches around
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object edges. Notice, however, the difference in the distortions
created by the MPEG-2 and H.264 compression systems, such
as reduced blockiness in the H.264 compressed frame. Videos
obtained from lossy transmission through wireless networks
exhibit errors that are restricted to small regions of a frame.
Videos obtained from lossy transmission through IP networks
exhibit errors in larger regions of the frame. Errors in wireless
and IP networks are also temporally transient and appear as
glitches in the video. Almost half the videos in the LIVE Video
Quality Database contain spatio-temporally localized distor-
tions, while the VQEG Phase 1 dataset is largely comprised of
compressed videos and contains only a few videos with errors
and spatio-temporally localized distortions.

The distortion strengths were adjusted manually so that the
videos obtained from each source and each distortion category
spanned a set of contours of equal visual quality. A large set of
videos were generated and viewed by the authors and a subset
of these videos that spanned the desired visual quality were
chosen to be included in the LIVE Video Quality Database. To
illustrate this procedure, consider four labels for visual quality
(“Excellent,” “Good,” “Fair,” and “Poor”) and one reference
video (“Tractor”). Four MPEG-2 compressed versions of
“Tractor” are chosen to approximately match the four labels
for visual quality. Similar procedure is applied to select H.264
compressed, wireless and IP distorted versions of “Tractor.”
Note that the “Excellent” MPEG-2 video and “Excellent”
H.264 video are designed to have the approximate same vi-
sual quality and similarly for other distortion categories and
quality labels. The same selection procedure is then repeated
for every reference video. Note that an “Excellent” test video
obtained from “Sunflower” is designed to have the approximate
same visual quality as an “Excellent” test video obtained from
“Tractor” and similarly for other reference videos. Our design
of the distorted videos tests the ability of objective VQA models
to predict visual quality consistently across varying content and
distortion types. The LIVE Video Quality Database is unique
in this respect and we believe that adjusting distortion strength
perceptually, as we have done here, is far more effective toward
challenging and distinguishing the performance of objective
VQA algorithms than, for instance, fixing the compression
rates across sequences as is done in most studies including the
VQEG FR-TV Phase 1 study [3]. The four distortion types are
detailed in Sections II-B1–B4.

1) MPEG-2 Compression: The MPEG-2 standard is used in a
wide variety of video applications, most notably DVD’s and dig-
ital broadcast television. There are four MPEG-2 compressed
videos corresponding to each reference in our database and we
will refer to this distortion category as “MPEG-2” in the re-
mainder of the paper. We used the MPEG-2 reference software
available from the International Organization for Standardiza-
tion (ISO) to compress the videos [10].

The bit rate required to compress videos for a specified vi-
sual quality varies dramatically depending on the content. The
authors selected four compressed MPEG-2 videos for each ref-
erence video by viewing compressed videos generated using a
wide variety of bit rates and selecting a subset that spanned the
desired range of visual quality. “Excellent” quality videos were
chosen to be quite close to the reference in visual quality. “Poor”
quality videos were chosen to be of similar quality as Youtube
videos, without being obliterated by MPEG blocking artifacts.

The compression rates varied from 700 kbps to 4 Mbps, de-
pending on the reference sequence.

2) H.264 Compression: H.264 is rapidly gaining popularity
due to its superior compression efficiency as compared to
MPEG-2. There are four H.264 compressed videos corre-
sponding to each reference in our database and we will refer
to this distortion category as “H.264” in the remainder of the
paper. We used the JM reference software (Version 12.3) made
available by the Joint Video Team (JVT) [11].

The procedure for selecting the videos was the same as that
used to select MPEG-2 compressed videos. The compression
rates varied from 200 kbps to 5 Mbps.

3) Transmission Over IP Networks: Videos are often trans-
mitted over IP networks in applications such as video telephony
and conferencing, IPTV and Video on Demand. There are three
“IP” videos corresponding to each reference in our database that
were created by simulating IP losses on an H.264 compressed
video stream and we will refer to this distortion category as
“IP” in the remainder of the paper. The H.264 compressed video
streams were created using the JM reference software [11] and
compression rates varied between 0.5–7 Mbps.

An in-depth study of the transport of H.264 video over IP
networks can be found in [12] and many of our design consid-
erations in the video communication system were based on this
study. IP networks offer best effort service and packet losses
occur primarily due to buffer overflow-at intermediate nodes in
a network with congestion. The video sequences subjected to
errors in the IP environment contained between one and four
slices per frame and each packet contained one slice; we only
used these two options since they result in packet sizes that are
typical in IP networks. Using one slice per frame has the ad-
vantage of reducing overhead due to IP headers, but at the ex-
pense of robustness [12]. Using four slices per frame increases
robustness to error (likelihood of an entire frame getting lost is
reduced), at the expense of reducing compression efficiency.

Four IP error patterns supplied by the Video Coding Experts
Group (VCEG), with loss rates of 3%, 5%, 10%, and 20%, were
used [13]. The error patterns were obtained from real-world ex-
periments on congested networks and are recommended by the
VCEG to simulate the Internet backbone performance for video
coding experiments. We created test videos by dropping packets
specified in the error pattern from an H.264 compressed packe-
tized video stream. To enable decoding, we did not drop the first
packet [containing the Instantaneous Data Refresh (IDR)] and
the last packet (since the loss of this packet cannot be detected by
the decoder). This is equivalent to assuming that these packets
were transmitted reliably out of band. The resulting H.264 bit-
stream was then decoded using [11] and the losses concealed
using the built-in error concealment mechanism (mode 2—mo-
tion copy) [14].

The authors viewed and selected a diverse set of videos suf-
fering from different types of observed artifacts and spanning
the desired range of quality. The type of observed artifact varies
depending on the following:

• Whether an Intracoded frame (I frame) or Predicted frame
(P frame) is lost—I frame losses result in much more se-
vere and sustained video distortions (that last until the next
I frame is received correctly).

• Whether each frame is transmitted in 1 packet or 4
packets—Loss of an entire frame when transmitted as a
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single slice results in much more significant distortions,
than when the frame is transmitted using four slices.

• Flexible Macroblock Ordering (FMO)—We used both reg-
ular and dispersed modes of FMO in our simulations [15].
In dispersed mode, we used four packet groups formed by
subsampling the frame by 2 along both rows and columns.
Loss of video packets in regular mode results in severe ar-
tifacts in localized regions of the video, while the impair-
ments are not as severe in the dispersed mode.

4) Transmission Over Wireless Networks: Video transmis-
sion for mobile terminals is envisioned to be a major applica-
tion in 3G systems and the superior compression efficiency and
error resilience of H.264 makes it ideal for use in harsh wire-
less transmission environments [15]. There are four videos cor-
responding to each reference in our database that were created
by simulating losses sustained by an H.264 compressed video
stream in a wireless environment and we will refer to this dis-
tortion category as “Wireless” in the remainder of the paper.
The H.264 compressed bitstreams were created using the JM
reference software [11] and compression rates varied between
0.5–7 Mbps.

An in-depth study of the transport of H.264 video over wire-
less networks can be found in [15]. Many of our design consid-
erations for the wireless simulations was based on this study. A
packet transmitted over a wireless channel is susceptible to bit
errors due to attenuation, shadowing, fading and multiuser in-
terference in wireless channels. We assume that a packet is lost
even if it contained a single bit error, an assumption that is often
made in practice [15]. Due to this assumption, a longer packet
is more likely to be lost and shorter packet sizes are desirable
in wireless networks. We encoded the video stream using mul-
tiple slices per frame, where each packet contained one slice. All
packets contained roughly the same number of bytes (approxi-
mately 200 bytes per packet), making their susceptibility to bit
errors almost identical. We simulated errors in wireless environ-
ments using bit error patterns and software available from the
VCEG [16]. The packet error rates using these bit error patterns
varied between 0.5–10%. The decoding and error concealment
techniques for the wireless simulations were identical to the IP
simulations.

Again, the authors viewed and selected videos suffering from
different types of observed artifacts and spanning the desired
range of quality. Observed artifacts in the wireless environment
also depend on whether an I or P packet is lost and on the FMO
mode. Due to the smaller packet sizes in wireless applications,
the observed artifacts are spatio-temporally localized and appear
different from the artifacts observed in IP applications.

C. Subjective Testing Design

We adopted a single stimulus continuous procedure to obtain
subjective quality ratings for the different video sequences. The
choice of a single stimulus paradigm is well suited to a large
number of emerging multimedia applications, such as quality
monitoring for Video on Demand, IPTV, Internet streaming, etc.
Additionally, it significantly reduces the amount of time needed
to conduct the study (given a fixed number of human subjects) as
compared to a double stimulus study. The subjects indicated the
quality of the video on a continuous scale. The continuous scale
allows the subject to indicate fine gradations in visual quality.
We believe this is superior to the ITU-R Absolute Category

Rating (ACR) scale that uses a five-category quality judgment,
as is used in recent VQEG studies [5]. The subject also viewed
each of the reference videos to facilitate computation of Dif-
ference Mean Opinion Scores (DMOS), a procedure known as
hidden reference removal [17], [18].

All the videos in our study were viewed by each subject,
which required half an hour of the subject’s time. To minimize
the effects of viewer fatigue, we conducted the study in two ses-
sions of 30 minutes each.

We prepared playlists for each subject by arranging the 150
test videos in a random order using a random number gener-
ator. We did not want the subjects to view successive presen-
tations of test videos that were obtained from the same refer-
ence sequence, to avoid contextual and memory effects in their
judgment of quality. Once a playlist was constructed, adjacent
sequences were examined to determine if they corresponded to
the same content. If any such pairs were detected, one of the
videos was swapped with another randomly chosen video in the
playlist which did not suffer from the same problem. This list
was then split into two halves for the two sessions.

We wanted to ensure that any differences in the use of the
quality judgment scale by the subject between sessions did not
affect the results of the study. For instance, a subject may be
very critical of the visual quality of a video in one session and
more forgiving in the other. To avoid this problem, we included
each reference video in both sessions in the hidden reference re-
moval process. We inserted each of the ten reference videos into
the playlists for each session randomly, again ensuring that suc-
cessive playback of the same content did not occur. The DMOS
scores were then computed for each video per session using the
quality score assigned to the reference video in that session, as
described in Section III.

D. Subjective Testing Display

We developed the user interface for the study on a Windows
PC using MATLAB, in conjunction with the XGL toolbox for
MATLAB developed at the University of Texas at Austin [19].
The XGL toolbox allows precise presentation of psychophysical
stimuli to human observers. It is extremely important to avoid
any errors in displaying the video such as latencies or frame
drops. This can significantly affect the results of the study since
the subject’s quality perception is affected not by the video it-
self, but by the display issues. To ensure perfect playback, all
distorted sequences were processed and stored as raw YUV
4:2:0 files. An entire video was loaded into memory before its
presentation began to avoid any latencies due to slow hard disk
access of large video files. The videos were then played out at
the appropriate frame rate for the subject to view. The XGL
toolbox interfaces with the ATI Radeon X600 graphics card in
the PC and utilizes its ability to play out the YUV videos. The
videos were viewed by the subjects on a cathode ray tube (CRT)
monitor to avoid the effects of motion blur and low refresh rates
on liquid crystal display (LCD) monitors. The entire study was
conducted using the same monitor and we calibrated the CRT
monitor using the Monaco Optix XR Pro device. The XGL
toolbox avoids visual artifacts by synchronizing the display so
that the switching between adjacent frames of the video occurs
during the retrace of the CRT scan. Since the videos had low
frame rates (25 and 50 Hz), we set the monitor resolution to
100 Hz to avoid artifacts due to monitor flicker. Each frame of
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Fig. 3. (a) Screenshot from the subjective study interface displaying the video to the subject. (b) Screenshot from the subjective study interface that prompts the
subject to enter a quality score for the video they completed viewing.

the 50-Hz videos was displayed for two monitor refresh cycles
and each frame of the 25-Hz videos was displayed for four mon-
itor refresh cycles.

The screen was set at a resolution of 1024 768 pixels and
the videos were displayed at their native resolution to prevent
any distortions due to scaling operations performed by software
or hardware. The remaining areas of the display were black. At
the end of the presentation of the video, a continuous scale for
video quality was displayed on the screen, with a cursor set at the
center of the quality scale to avoid biasing the subject’s quality
percept. The quality scale had five labels marked on it to help
the subject. The left end of the scale was marked “Bad” and the
right end was marked “Excellent.” Three equally spaced labels
between these were marked “Poor,” “Fair,” and “Good,” similar
to the ITU-R ACR scale. Screenshots from the subjective study
interface are shown in Fig. 3. The subject could move the cursor
along the scale by moving a mouse. The subject was asked to
press a key to enter the quality score after moving the cursor to a
point on the scale that corresponded to his or her quality percept.
The subject was allowed to take as much time as needed to enter
the score. However, the subject could not change the score once
entered or view the video again. Once the score was entered, the
next video was displayed.

E. Subjects and Training

All subjects taking part in the study were recruited from the
undergraduate Digital Image and Video Processing class (fall
2007) at the University of Texas at Austin. The subject pool
consisted of mostly male students. The subjects were not tested
for vision problems. Each video was ranked by 38 subjects.

Each subject was individually briefed about the goal of the
experiment and viewed a short training session before starting
the experiment. Subjects viewed six training videos in their first
session of participation and three training videos in their second
session. Subjects were asked to provide quality scores for the
training videos also to familiarize themselves with the testing
procedure. The training videos were not part of the database and
contained different content. The training videos were of 10-s
duration and were also impaired by the same distortions as the
test videos. We selected the training videos to span the same
range of quality as the test videos, to give the subject an idea of

the quality of videos they would be viewing in the study and to
enable suitable use of the quality scale by the subject.

III. PROCESSING OF SUBJECTIVE SCORES

Let denote the score assigned by subject to video in
session . Since our focus in this paper is on full-ref-
erence objective VQA algorithms that assume a “perfect” refer-
ence video, we compute difference scores between the test video
and the corresponding reference to discount any subject prefer-
ences for certain reference videos. First, difference scores
are computed per session by subtracting the quality assigned by
the subject to a video from the quality assigned by the same sub-
ject to the corresponding reference video in the same session.
Computation of difference scores per sessions helps account for
any variability in the use of the quality scale by the subject be-
tween sessions

(1)

The difference scores for the reference videos are 0 in both
sessions and are removed. The difference scores per session are
then converted to Z-scores per session [20]

(2)

(3)

(4)

where is the number of test videos seen by subject in ses-
sion . Again, note that Z-scores are computed per session to
account for any differences in the use of the quality scale (dif-
ferences in the location and range of values used by the subject)
between sessions.

Every subject sees each test video in the database exactly
once, either in the first session or in the second session. The
Z-scores from both sessions are then combined to create a ma-
trix corresponding to the Z-score assigned by subject to
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Fig. 4. Histogram of the DMOS scores in 15 equally spaced bins between the minimum and maximum DMOS values for (a) LIVE Video Quality Database and
(b) VQEG FRTV Phase 1 Database.

video , where indexes test videos
in the LIVE Video Quality Database.

A subject rejection procedure specified in the ITU-R BT
500.11 recommendation is then used to discard scores from
unreliable subjects [21]. Note that Z-scores in (4) account for
any differences in subject preferences for reference videos, use
of the quality scale between subjects, and differences in use
of the quality scale by a subject between sessions. We believe
that the processing and subject rejection procedure used here
is superior to the VQEG studies for these reasons [3], [6],
[7]. The ITU-R BT 500.11 recommendation first determines
if the scores assigned by a subject are normally distributed by
computing the kurtosis of the scores. The scores are considered
normally distributed if the kurtosis falls between the values of
2 and 4. If the scores are normally distributed, the procedure
rejects a subject whenever more than 5% of scores assigned
by him falls outside the range of two standard deviations from
the mean scores. If the scores are not normally distributed, the
subject is rejected whenever more than 5% of his scores falls
outside the range of 4.47 standard deviations from the mean
scores. In both situations, care is taken to ensure that subjects
who are consistently pessimistic or optimistic in their quality
judgments are not eliminated [21]. In our study, 9 out of the 38
subjects were rejected at this stage. We found that the reason
for the large number of rejected subjects is the borderline
reliability of four subjects. The 5% criterion used in the subject
rejection procedure translates to 7.5 videos in the LIVE Video
Quality Database. Four of the nine rejected subjects scored 8
videos outside the expected range in the LIVE study and were
rejected by the procedure.

Z-scores were then linearly rescaled to lie in the range of
. Assuming that Z-scores assigned by a subject are dis-

tributed as a standard Gaussian, 99% of the scores will lie in the
range [-3,3] and we found that all Z-scores in our study fell in-
side this range. Rescaling was hence accomplished by linearly
mapping the range to using

(5)

Finally, the Difference Mean Opinion Score (DMOS) of each
video was computed as the mean of the rescaled Z-scores from
the remaining subjects after subject rejection.

DMOS (6)

The LIVE Video Quality Database was designed to sample a
range of visual quality in an approximately uniform fashion, as
described in Section II-B. To illustrate this, we show histograms
of the DMOS scores obtained from the LIVE Video Quality
Database and the VQEG FRTV Phase 1 database in Fig. 4. Fig. 4
shows that the LIVE Video Quality Database exhibits reason-
ably uniform distribution of scores along the DMOS axis, while
the VQEG FRTV Phase 1 database exhibits poor perceptual sep-
aration with a large number of videos of very high quality and
far fewer videos of poor quality.

The DMOS scores in the LIVE Video Quality Database lie in
the range , as seen in Fig. 4. This range may appear small
to readers used to seeing subjective scores obtained using the
highly popular Double Stimulus Continuous Quality Scoring
(DSCQS) paradigm for subjective testing [21]. The DSCQS
method was also used in the VQEG Phase 1 study, where the
subjects score the quality of the reference and test videos on
a scale and DMOS is computed as the difference be-
tween the scores assigned to the reference and test video. The
LIVE Video Quality Database, on the other hand, uses a single
stimulus paradigm with hidden reference removal and DMOS
is computed as Z-scores assigned by subjects, and not as differ-
ences between scores assigned to the reference and test videos.
We believe that conversion of difference scores to Z-scores, as
we have done here, is very important to account for differences
in use of the scale by subjects. Assuming that Z-scores assigned
by a subject are distributed as a standard Gaussian, 99% of
Z-scores will lie in the range that corresponds to DMOS
scores in the range . on the DMOS scale used in
the LIVE Video Quality Database corresponds to mean Z-scores
in the range , which corresponds to approximately
86% of the area of the standard normal distribution. We believe
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that this range is reasonable for mean Z-scores, with individual
Z-scores fluctuating beyond this range to extreme points on the
scale.

IV. OBJECTIVE VQA ALGORITHMS

The performance of several publicly available objective VQA
algorithms was evaluated on the LIVE Video Quality Database.
One of the problems we faced was the lack of free availability
of many VQA algorithms, since many popular VQA algorithms
and tools are licensed and sold for profit. These include the
Picture Quality Analyzer from Tektronix [22]; the Perceptual
Evaluation of Video Quality (PEVQ) from Opticom [23]; the
V-Factor from Symmetricom [24]; VQA solutions from Swiss-
Qual [25] and Kwill Corporation [26] and several others [27].
Our testing was limited to freely available VQA algorithms.
Naturally, we will broaden our test set as more algorithms be-
come freely available.

We tested the following VQA algorithms on the LIVE Video
Quality Database.

• Peak Signal-to-Noise Ratio (PSNR) is a simple function
of the Mean Squared Error (MSE) between the reference
and test videos and provides a baseline for objective VQA
algorithm performance.

• Structural SIMilarity (SSIM) is a popular method for
quality assessment of still images [28], [29], that was
extended to video in [30]. The SSIM index was applied
frame-by-frame on the luminance component of the video
[30] and the overall SSIM index for the video was com-
puted as the average of the frame level quality scores.
Matlab and Labview implementations of SSIM are avail-
able from [31].

• Multiscale SSIM (MS-SSIM) is an extension of the SSIM
paradigm, also proposed for still images [32], that has been
shown to outperform the SSIM index and many other still
image quality assessment algorithms [33]. We extended the
MS-SSIM index to video by applying it frame-by-frame
on the luminance component of the video and the overall
MS-SSIM index for the video was computed as the average
of the frame level quality scores. A Matlab implementation
of MS-SSIM is available for download from [31].

• Speed SSIM is the name we give to the VQA model pro-
posed in [34], that uses the SSIM index in conjunction with
statistical models of visual speed perception described in
[35]. Using models of visual speed perception was shown
to improve the performance of both PSNR and SSIM in
[34]. We evaluated the performance of this framework with
the SSIM index, which was shown to perform better than
using the same framework with PSNR [34]. A software im-
plementation of this index was obtained from the authors.

• Visual Signal-to-Noise Ratio (VSNR) is a quality assess-
ment algorithm proposed for still images [36] and is avail-
able for download from [37]. We applied VSNR frame-by-
frame on the luminance component of the video and the
overall VSNR index for the video was computed as the av-
erage of the frame level VSNR scores.

• Video Quality Metric (VQM) is a VQA algorithm devel-
oped at the National Telecommunications and Information
Administration (NTIA) [38]. Due to its excellent perfor-
mance in the VQEG Phase 2 validation tests, the VQM
methods were adopted by the American National Stan-

dards Institute (ANSI) as a national standard, and as In-
ternational Telecommunications Union Recommendations
(ITU-T J.144 and ITU-R BT.1683, both adopted in 2004).
VQM is freely available for download from [39].

• V-VIF is the name we give to the VQA model proposed
in [40] that extends the Visual Information Fidelity (VIF)
criterion for still images proposed in [41] to video using
temporal derivatives. A software implementation of this
index was obtained from the authors.

• MOtion-based Video Integrity Evaluation (MOVIE) index
is a VQA index that was recently developed at LIVE [42],
[43]. A software implementation of MOVIE is freely avail-
able for research purposes [31]. Three different versions
of the MOVIE index—the Spatial MOVIE index, the Tem-
poral MOVIE index and the MOVIE index—were tested in
our study.

A. Performance of Objective Models

We tested the performance of all objective models using two
metrics—the Spearman Rank Order Correlation Coefficient
(SROCC) which measures the monotonicity of the objec-
tive model prediction with respect to human scores and the
Pearson Linear Correlation Coefficient (LCC) after nonlinear
regression, which measures the prediction accuracy. The LCC
is computed after performing a nonlinear regression on the
objective VQA algorithm scores using a logistic function. We
used the logistic function and the procedure outlined in [3] to
fit the objective model scores to the DMOS scores.

Let represent the quality that a VQA algorithm predicts
for video in the LIVE Video Quality Database. A four-param-
eter, monotonic logistic function was used to fit the VQA algo-
rithm prediction to the subjective quality scores

(7)

Nonlinear least squares optimization is performed using the
Matlab function “nlinfit” to find the optimal parameters that
minimize the least squares error between the vector of subjective
scores (DMOS ) and the vector of fitted objec-
tive scores ( ). Initial estimates of the pa-
rameters were chosen based on the recommendation in [3]. We
linearly rescaled VQA algorithm scores before performing the
optimization to facilitate numerical convergence. The SROCC
and the LCC are computed between the fitted objective scores

and the subjective scores DMOS .
Table I (a) and (b) shows the performance of all models in

terms of the SROCC and the LCC respectively for each dis-
tortion type and for the entire LIVE Video Quality Database.
Scatter plots of objective scores versus DMOS for all the algo-
rithms on the entire LIVE Video Quality Database, along with
the best fitting logistic functions, are shown in Fig. 5. Our re-
sults clearly demonstrate that a carefully constructed database
of videos can expose the significant limitations of PSNR as a
VQA measure. All the VQA algorithms tested in our study im-
prove upon PSNR. Speed SSIM improves upon using just the
SSIM index. The best performing VQA algorithm amongst the
ones tested in our study, in terms of both the SROCC and LCC
after nonlinear regression, is the temporal MOVIE index. One
of the three versions of the MOVIE index (Spatial MOVIE,
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TABLE I
COMPARISON OF THE PERFORMANCE OF VQA ALGORITHMS. THE BEST PERFORMING ALGORITHM IS HIGHLIGHTED IN BOLD FONT FOR EACH CATEGORY.

(A) SPEARMAN RANK ORDER CORRELATION COEFFICIENT, (B) LINEAR CORRELATION COEFFICIENT

Fig. 5. Scatter plots of objective VQA scores versus DMOS for all videos in the LIVE Video Quality Database. Also shown is the best fitting logistic function.
(a) PSNR. (b) SSIM. (c) MS-SSIM. (d) Speed SSIM. (e) VSNR. (f) VQM. (g) V-VIF. (h) Spatial MOVIE. (i) Temporal MOVIE. (j) MOVIE.
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TABLE II
BEST PERFORMING VQA ALGORITHM IS HIGHLIGHTED IN BOLD FONT FOR EACH CATEGORY. (a) VARIANCE OF THE RESIDUALS BETWEEN INDIVIDUAL

SUBJECTIVE SCORES AND VQA ALGORITHM PREDICTION. F-RATIOS FOR EACH OBJECTIVE MODEL CAN BE COMPUTED AS THE RATIO OF THE VARIANCE

OF THE MODEL RESIDUAL TO THAT OF THE NULL RESIDUAL. F-RATIOS LARGER THAN THE THRESHOLD F-RATIO INDICATE THAT THE OBJECTIVE MODEL IS

NOT STATISTICALLY EQUIVALENT TO THE NULL OR OPTIMAL MODEL. (b) VARIANCE OF THE RESIDUALS BETWEEN VQA ALGORITHM PREDICTIONS AND

DMOS VALUES. F-RATIOS TO COMPARE TWO OBJECTIVE MODELS CAN BE COMPUTED AS THE RATIO OF THE VARIANCES OF THE MODEL RESIDUALS

FROM THE TWO MODELS, WITH THE LARGER VARIANCE PLACED IN THE NUMERATOR. F-RATIOS LARGER THAN THE THRESHOLD F-RATIO INDICATE

THAT THE PERFORMANCE OF THE OBJECTIVE MODEL IN THE NUMERATOR IS STATISTICALLY INFERIOR TO THAT IN THE DENOMINATOR

Temporal MOVIE and the MOVIE index) is the best performing
algorithm using SROCC or LCC as a performance indicator
for each individual distortion category also. The performance
of VQM, MS-SSIM and Spatial MOVIE on the LIVE Video
Quality Database is comparable. Superior performance of Tem-
poral MOVIE and MOVIE on the LIVE Video Quality Database
clearly illustrates the importance of modeling visual motion per-
ception in VQA.

B. Statistical Evaluation

The results presented in Table I (a) and (b) shows differences
in the performance of different objective VQA algorithms in
terms of both performance criteria. In this section, we attempt to
answer the question of whether this difference in performance is
statistically significant. We test the statistical significance of the
results presented in Section IV-A using two different statistical
tests suggested in [6]. The same tests were also used in the sta-
tistical analysis performed on the LIVE still image quality data-
base [33]. The first is an F-test based on individual rating scores
obtained from different subjects, which tests whether the perfor-
mance of any objective VQA model matches the performance
of humans. This test is presented in Section IV-B1. The second
test is an F-test based on the errors between the average DMOS
scores and model predictions, which tests whether the perfor-
mance of one objective model is statistically superior to that
of a competing model. This test is presented in Section IV-B2.
We discuss the assumptions on which the statistical significance
tests are based in Section IV-B3. See [44] for a description of
statistical significance tests and F-tests.

1) F-Test Based on Individual Quality Scores: There is in-
herent variability amongst subjects in the quality judgment of a
given video. The performance of an objective model can be, and
is expected to be, only as good as the performance of humans
in evaluating the quality of a given video. The optimal or “null”
model obtained from the subjective study predicts the quality
of a given video as the averaged Z-score across subjects, which
was defined as the DMOS. The residual differences between the
null model and individual quality scores assigned by each sub-
ject to a given video cannot be predicted by any objective model.

Hence, the null model has a baseline residual that corresponds to
the residual between individual subjective scores from different
subjects and the averaged DMOS score and is given by

Null Residual (individual ratings) DMOS

and (8)

Similar residuals can be defined for each of the objective
VQA algorithms tested in the study. The residual errors between
individual subjective scores and the VQA algorithm prediction
of quality are given by

Model Residual (individual ratings)

and (9)

An F-test is performed on the ratio of the variance of the
model residual to the variance of the null residual at 95% sig-
nificance. The null hypothesis is that the variance of the model
residual is equal to the variance of the null residual. A threshold
F-ratio can be determined based on the number of degrees of
freedom in the numerator and denominator and the significance
level of the F-test. Values of the F-ratio larger than the threshold
would cause us to reject the null hypothesis and conclude that
the performance of the objective model is not statistically equiv-
alent to the null or optimal model.

The variance of the residuals from the null model and each of
the ten objective VQA models, as well as the number of sam-
ples in each category, is shown in Table II(a). The numerator
and denominator degrees of freedom in the F-test is obtained
by subtracting one from the number of samples. The threshold
F-ratio at 95% significance is also shown in the table. None of
the VQA algorithms tested in our study were found to be sta-
tistically equivalent to the null model or the theoretically op-
timal model corresponding to human judgment in any of the
five categories (Wireless, IP, H.264, MPEG-2, or All Data). The
same conclusion was reached in the VQEG Phase 2 study [6]
and the LIVE still image quality study [33], wherein none of
the algorithms tested in each of these studies were found to be
equivalent to the theoretically optimal model. Apparently, de-
spite significant progress, there remains considerable opportu-
nity to improve the performance of objective VQA algorithms!
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TABLE III
RESULTS OF THE F-TEST PERFORMED ON THE RESIDUALS BETWEEN MODEL PREDICTIONS AND DMOS VALUES. EACH ENTRY IN THE TABLE IS A CODEWORD

CONSISTING OF FIVE SYMBOLS. THE SYMBOLS CORRESPOND TO “WIRELESS”, “IP,” “H.264,” “MPEG-2” AND “ALL DATA” IN THAT ORDER. A SYMBOL VALUE

OF “1” INDICATES THAT THE STATISTICAL PERFORMANCE OF THE VQA MODEL IN THE ROW IS SUPERIOR TO THAT OF THE MODEL IN THE COLUMN. A SYMBOL

VALUE OF “0” INDICATES THAT THE STATISTICAL PERFORMANCE OF THE MODEL IN THE ROW IS INFERIOR TO THAT OF THE MODEL IN THE COLUMN AND “-”
INDICATES THAT THE STATISTICAL PERFORMANCE OF THE MODEL IN THE ROW IS EQUIVALENT TO THAT OF THE MODEL IN THE COLUMN. NOTICE THAT THE

MATRIX IS SYMMETRIC AND THAT THE CODEWORDS AT TRANSPOSE LOCATIONS IN THE MATRIX ARE BINARY COMPLEMENTS OF EACH OTHER. M1 THROUGH

M10 ARE PSNR, SSIM, MS-SSIM, SPEED SSIM, VSNR, VQM, V-VIF, SPATIAL MOVIE, TEMPORAL MOVIE, AND MOVIE RESPECTIVELY

2) F-Test Based on Average Quality Scores: The residual
error between the quality predictions of an objective VQA
model and the DMOS values on the LIVE Video Quality Data-
base can be used to test the statistical superiority of one VQA
model over another. The residual errors between the objective
algorithm prediction and the DMOS value is given by

Model Residual (average ratings) DMOS

(10)

An F-test is performed on the ratio of the variance of the
residual error from one objective model to that of another ob-
jective model at 95% significance level. The null hypothesis
states that variances of the error residuals from the two dif-
ferent objective models are equal. The variance of the residual
errors between model predictions and the DMOS for all the
objective models tested in our study for all the categories are
shown in Table II(b). The F-ratio is always formed by placing
the objective model with the larger residual error variance in the
numerator. Threshold F-ratios can be determined based on the
number of samples in each category and the significance level.
The threshold F-ratio and the number of samples in each cate-
gory are also listed in Table II(b). An F-ratio ratio larger than
the threshold indicates that the performance of the VQA algo-
rithm in the numerator of the F-ratio is statistically inferior to
that of the VQA algorithm in the denominator. The results of
the statistical significance test are reported in Table III.

To summarize the results in Table III, the performance of
Temporal MOVIE and MOVIE is statistically superior to that
of PSNR, SSIM, Speed SSIM, VSNR, and V-VIF and the per-
formance of Spatial MOVIE is superior to that of PSNR, SSIM,
VSNR, and V-VIF on the wireless dataset. The performance
of all algorithms are statistically equivalent on the IP dataset.
The performance of Temporal MOVIE and MOVIE are statisti-
cally superior to PSNR on the H.264 dataset. The performance
of VQM is superior to PSNR, SSIM, and VSNR and the per-
formance of MOVIE is superior to PSNR and SSIM on the
MPEG-2 dataset. Additionally, the performance of Temporal
MOVIE is superior to PSNR, SSIM, MS-SSIM, Speed SSIM,
VSNR, and V-VIF on the MPEG-2 dataset.

The performance of Temporal MOVIE, which is the best per-
forming algorithm on the entire LIVE Video Quality Database,
is statistically superior to the performance of all algorithms
tested in the study, with the exception of MOVIE. The MOVIE
index is statistically superior to PSNR, SSIM, Speed SSIM,
VSNR and V-VIF on the entire LIVE Video Quality Database.
Spatial MOVIE, MS-SSIM , and VQM are superior to PSNR,
SSIM, Speed SSIM, and V-VIF on the entire LIVE Video
Quality Database. Finally, the performance of VQM is superior
to that of PSNR and SSIM on the entire LIVE Video Quality
Database.

Assumptions of the F-Test: The F-test that we use assumes
that the residuals are independent samples from a normal distri-
bution and is fairly robust to this assumption [44]. For additional
verification of the robustness of the F-tests to the underlying as-
sumptions, we also performed bootstrapped F-tests on both the
individual quality scores and the average quality scores [45].
For instance, bootstrapped F-tests on the average quality scores
were performed by selecting values from the vectors of model
residuals in (10) randomly with resampling for each of the two
models under test and computing the F-ratio. This procedure is
repeated 10 000 times to obtain the sampling distribution of the
F-ratio. We visually verified that the sampling distribution of the
F-ratio is shifted to the right of 1 for all cases where statistical
significance was established. Due to space limitations, we only
show the sampling distribution of the F-ratio on the entire LIVE
Video Quality Database for each of the six models whose per-
formance is statistically superior to PSNR in Fig. 6.

For additional verification of the assumptions of the F-test,
we performed another simulation where we generated inde-
pendent samples from a standard normal distribution with the
same mean and variance as the vector of model residuals in
(10). The F-ratio was then computed between each pair of objec-
tive models. This procedure was repeated 10 000 times for each
pair to obtain the sampling distribution of the F-ratio when the
assumptions of the F-test are exactly met. The resulting sam-
pling distribution is also shown in Fig. 6 in dotted lines. It is
seen that the two sampling distributions are quite close to each
other, which shows that any deviations of the distribution of the
residual data from the assumption of independent and Gaussian
residuals do not affect the results of the statistical tests greatly.
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Fig. 6. Sampling distribution of the F-ratio obtained using bootstrap simulations for the F-test based on average quality scores. Sampling distributions are shown
for all VQA models that are statistically superior to PSNR on the entire LIVE Video Quality Database. Note that the sampling distributions are shifted to the right
of 1. Also shown in dotted lines is the sampling distribution of the F-ratio when random samples are generated to exactly satisfy the assumptions of the F-test. Note
that the sampling distribution obtained from the data and the sampling distribution obtained from simulated data that satisfy the F-test assumptions are very similar.
(a) PSNR versus MS-SSIM. (b) PSNR versus VSNR. (c) PSNR versus VQM. (d) PSNR versus Spatial MOVIE. (e) PSNR versus Temporal MOVIE. (f) PSNR
versus MOVIE.

This simulation was also performed for the F-tests based on in-
dividual quality scores with identical conclusions.

C. Discussion of Results

The intention of this study has been to provide an indepen-
dent, academic VQA resource that is freely available to down-
load, free from commercial interests, broadly representative of
applications, and that will be continuously vital, since the data-
base will be updated over time. Future human studies are also
planned that will extend the scope of the current study.

The study has been a rather large undertaking. Of course, the
results of the human study and of the algorithm comparisons
do not represent a final statement, since in coming years new
theories and algorithms will continue to be developed in this
exciting area, existing algorithms will be improved, and some
unavailable (proprietary) algorithms may be offered for compar-
ison (we continue our efforts to obtain these). As video applica-
tions continue to evolve, the set of distortions to be considered
as “representative” will naturally change over time as well. New
developments will be posted on the LIVE VQA website [8] on
a regular basis.

The results that we obtained here affirm long-held beliefs re-
garding the failure of “classical” measures of video “quality” to
predict the human sense of quality. Most notably, the long-used
PSNR has been shown to perform very poorly against human
subjectivity, far worse than any of the perceptually relevant al-
gorithms considered. We hope that this result helps lay to rest, at
long last, the notion that the PSNR is a reliable predictor, mea-
sure, or optimizer of video (or image) quality—at least for appli-
cations where humans are the video “receivers.” If we succeed

in hastening the demise of the PSNR, then it will, perhaps, be
the most gratifying and important product of this effort.

The correlation study comparing the various VQA algorithms
against the large set of human data produced a number of useful
results and some surprising ones as well. Good performance
of two of the algorithms (MS-SSIM [32] and the VQM from
NTIA [38]) affirm both of these algorithms as extremely prac-
tical and well-suited to benchmark video processing algorithms,
especially since both algorithms do not perform computation-
ally intensive operations such as motion estimation. Since both
algorithms are freely available for download (although VQM is
restricted for commercial use) [27], [39], these can be easily
used to analyze the performance of a video processing algo-
rithm, provided that the performance simulations have available
a reference for comparison.

The notion that using computed motion information can im-
prove VQA algorithm performance is strongly validated by the
study. For example, “Speed SSIM” [34] exhibits substantially
improved performance relative to simple (single-scale) SSIM
[29]. One wonders at how well “Speed SSIM” might perform if
made multiscale, which would require some nontrivial design.
Nevertheless, the distinction in performance between simple
SSIM and MS-SSIM suggests that this might be a fruitful de-
velopment. Likewise, the still image algorithm VSNR [36] also
performed well, suggesting that a future version of this algo-
rithm that seeks to incorporate temporal information should be
encouraged.

The Temporal MOVIE index, described in detail in [42] and
[43], yielded the best overall performance and is statistically su-
perior to all other algorithms tested in this study with the excep-
tion of MOVIE. Before discussing this performance, we note
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that the MOVIE algorithm tested on this database is unchanged
from the one reported in the literature and successfully tested on
the VQEG database. The algorithm was “frozen” before the data
from the human studies provided here were completely cap-
tured, analyzed, and used to compare algorithms. As described
in [42] and [43], the few parameters (three masking constants)
in the MOVIE index were selected to take values equal to the
nearest order of magnitude of an appropriate energy term. While
it is possible that parameter “fiddling” could improve any VQA
algorithm (for example, the VQM algorithm has been trained
on the VQEG FRTV Phase 1 database as part of the process of
selecting its many parameters), this has not been done with the
MOVIE index.

Instead, the success of the MOVIE index lies in two direc-
tions: first, the use of perceptually relevant models of human vi-
sual perception in space and time. As described in [43], MOVIE
utilizes specific (Gabor receptive field) models of cortical area
V1 to dissemble video data into multiscale space-time primi-
tives. The Gabor receptive field model has produced dominant
approaches to many fundamental vision engineering problems,
such as texture analysis [46], [47], motion analysis [48], compu-
tational stereo [49], and human biometrics [50], [51]. MOVIE
also uses a specific model of the relatively well-understood ex-
tracortical area V5 (also known as area MT) to effect a biolog-
ically plausible model of visual motion processing [52]. Using
these models, MOVIE deploys SSIM-like multiscale processing
to compute local scale-space comparisons that can be supported
from an information-theoretic viewpoint under natural scene
statistical models [53].

Looking at the breakdown of MOVIE into its spatial and tem-
poral components, it may be observed that Spatial MOVIE at-
tains a level of performance very similar to that of MS-SSIM
and VQM—overall, in nearly every category and statistically.
Indeed, Spatial MOVIE may be viewed as a perceptual matched
version of MS-SSIM, owing to its use of spatio-temporal basis
functions. Temporal MOVIE performs considerably better than
Spatial MOVIE and every other algorithm tested in our study
and the improvement is shown to be statistically significant,
despite not being tuned to detect spatial distortions (of which
the database contains many). MOVIE also shows excellent per-
formance and is statistically superior to PSNR, SSIM, Speed
SSIM, VSNR, VQM, and V-VIF. We believe that these results
powerfully illustrate the need for modeling visual motion pro-
cessing in VQA. It is interesting that the performance of Tem-
poral MOVIE is better than that of MOVIE overall. However,
this difference in performance is not statistically significant and
further, MOVIE performs better than Temporal MOVIE on the
wireless and IP videos in terms of LCC and on the VQEG data-
base [43].

In our view, it is plausible that MOVIE might approach the
limits of performance that might be obtained by VQA algo-
rithms without taking into account other factors, such as human
attention, foveation, and salience [54]. These are topics for fu-
ture studies.

Broadly, this study shows that there are a number of algo-
rithms that perform significantly better than traditional methods
with a high degree of statistical confidence. We have the opinion
that these and future algorithms should play an increasingly im-

portant role in the benchmarking and design of video processing
systems.

V. CONCLUSIONS AND FUTURE WORK

A subjective study to evaluate the effects of present genera-
tion video compression and communication technologies on the
perceptual quality of digital video was presented. This study in-
cluded 150 videos derived from ten reference videos using four
distortion types and were evaluated by 38 subjects. The resulting
LIVE Video Quality Database is unique in terms of content and
distortion and is publicly available for research purposes [8]. We
presented an evaluation of the performance of several publicly
available objective VQA models on this database.

A distinguishing feature of our database was that the distor-
tion strengths were adjusted perceptually to test the ability of
VQA models to perform consistently well across content types.
Two of the distortion types in our database resulting from video
transmission through lossy wireless and IP networks cause dis-
tortions that are transient, both spatially and temporally. This
is another distinguishing and important aspect of the database.
VQA algorithms need to be able to account for such transient
distortions. Regarding the evaluation of objective quality in-
dexes using the linear (Pearson) correlation (LCC), a logistic
function was used to fit the data to account for nonlinearities in
the objective model. It can be argued that it would be conve-
nient for an objective model to have a linear relationship with
subjective quality judgments, since it would allow for easier in-
terpretation and use of the VQA algorithm. Of course, VQA
and still image quality assessment algorithms generally do not
exhibit linear behavior relative to human subjective judgments
(Section IV-A). Nonlinearities in the objective model can be
accounted for by calibration within the model, with the added
caveat that subjective judgment of quality can vary with sub-
jective data processing, context, calibration, and range of sub-
jective qualities being considered. While linearity of a model
relative to subjectivity is convenient for interpretation, in our
view, correlation measures that do not rely on any linearity as-
sumptions, such as SROCC, that are independent of any func-
tion mapping between the objective and subjective scores are
particularly useful for direct algorithm comparisons.

As part of our study, we also recorded quality scores in contin-
uous time provided by the subject as they are viewing the video.
This provides a description of the quality of the video as a func-
tion of time. We intend to make use of this data in the future
to design pooling strategies for objective VQA algorithms that
can correlate with human data scores. The single stimulus sub-
jective testing paradigm with hidden reference removal used in
the LIVE Video Quality Database makes it amenable to testing
the performance of no-reference VQA algorithms. No-reference
VQA is a far less mature field than full-reference VQA and the
focus to date has largely been on application-specific metrics
that measure the perceptual strength of specific distortions typ-
ical in applications such as compression, network transmission
of video and so on. We intend to work on the elusive goal of
generic no-reference VQA in the future and hope that the LIVE
Video Quality Database will prove valuable in advancing the
state of the art in this field also.
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