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Visual quality evaluation has numerous uses in practice, and also plays a central role in shaping many
visual processing algorithms and systems, as well as their implementation, optimization and testing. In
this paper, we give a systematic, comprehensive and up-to-date review of perceptual visual quality met-
rics (PVQMs) to predict picture quality according to human perception. Several frequently used computa-
tional modules (building blocks of PVQMs) are discussed. These include signal decomposition, just-
noticeable distortion, visual attention, and common feature and artifact detection. Afterwards, different
types of existing PVQMs are presented, and further discussion is given toward feature pooling, viewing
condition, computer-generated signal and visual attention. Six often-used image metrics (namely SSIM,
VSNR, IFC, VIF, MSVD and PSNR) are also compared with seven public image databases (totally 3832 test
images). We highlight the most significant research work for each topic and provide the links to the exten-
sive relevant literature.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Quality evaluation for digital visual signals is one of the basic and
challenging problems in the field of image and video processing as
well as many practical situations, such as process evaluation, imple-
mentation, optimization (e.g., video encoding), testing and monitor-
ing (e.g., in transmission and manufacturing sites). In addition, how
to evaluate picture quality plays a central role in shaping most (if not
all) visual processing algorithms and systems [50,114,124]. Exam-
ples of technological dependence upon visual quality evaluation in-
clude: signal acquisition, synthesis, enhancement, watermarking,
compression, transmission, storage, retrieval, reconstruction,
authentication, and presentation (e.g., display and printing).

Objective quality evaluation for images and video can be classi-
fied into two board types: signal fidelity measures, and perceptual
visual quality metrics (PVQMs).

The signal fidelity measures refer to the traditional MAE (mean
absolute error), MSE (mean square error), SNR (signal-to-noise ra-
tio), PSNR (peak SNR), or one of their relatives [41]. Although they
are simple, well defined, with clear physical meanings and widely
accepted, they can be a poor predictor of perceived visual quality,
especially when the noise is not additive [71,84]. Some metrics
have been used to estimate delivered picture quality after transmis-
sion based on network parameters [108,138,183], such as through-
ll rights reserved.
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put, jitter, delay, bit error and packet loss rates. However, the same
network parameters may result in different degradation of visual
content, and therefore different perceived quality. Quality deter-
mined by consumers’ perception and satisfaction is much more
complex than the statistics that a typical network management sys-
tem can provide. It has been well acknowledged that a signal fidel-
ity measure does not align well with human visual perception of
natural images or computer generated graphics [41,52,97,149,161].

Since the human visual system (HVS) is the ultimate receiver
and appreciator for the majority of processed images, video and
graphics, it would be more logical, economical and user-oriented
to develop a perceptual quality metric in system design and
optimization. Naturally, perceptual visual quality (or distortion)
can be evaluated by subjective viewing tests with appropriate
standard procedures [65]. This is however time consuming, labori-
ous and expensive, since the resultant mean opinion score (MOS)
needs to be obtained by many observers through repeated viewing
sessions. Moreover, incorporation of subjective viewing tests is not
feasible for on-line visual signal manipulations (such as encoding,
transmission, relaying, etc.). Even in situations where human
examiners are allowed (e.g., visual inspection in a factory environ-
ment) and the manpower cost is not a problem, the assessment
results still depend upon viewers’ physical conditions, emotional
states, personal experience, and the context of preceding display.
Hence, it is necessary to build computational models to predict
the evaluation of an average observer. In other words, objective
means are sought to approximate human perception results (e.g.,
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MOS, when the number of subjects is sufficiently large). In compar-
ison with the subjective viewing tests, objective metrics are
advantageous in repeatability due to the nature of objective
measurement.

Although physical variations in terms of MSE, SNR, PSNR, etc. re-
flect picture quality change, these traditional signal fidelity metrics
fail to predict the HVS perception because of the following problems:

(1) Not every change in an image is noticeable;
(2) Not every pixel/region in an image receives the same atten-

tion level;
(3) Not every change leads to distortion (otherwise, many edge

sharpening and post-processing algorithms would have not
been developed);

(4) Not every change yields a same extent of perceptual effect
with a same magnitude of change (due to spatial/tempo-
ral/chrominance masking).

A significant amount of research efforts has been made toward
HVS-based picture quality evaluation during the past decade
[26,27,51,70,106,118,123,156,157,160,183,188] so as to tackle the
abovementioned four problems of traditional measures.
2. The problem

2.1. Nature of the problem

Visual quality assessment can be of the first party (the photog-
rapher or image maker), the second party (the subject of an image)
and the third party (neither the photographer nor the subject) [72].
The concern in this survey is the perception of third-party observ-
ers, since this represents the most general and meaningful situa-
tion in modeling and applications.

PVQMs refer to the objective models for predicting subjective
visual quality scores (i.e., the MOS). In this paper, we will focus
on surveying the PVQMs developed so far that carry out direct
evaluation of the actual picture under consideration, rather than
some predefined signal patterns that go through the same process-
ing [66]. This is because picture quality is a function of visual con-
tents, so the change of predefined test signals through a system is
not necessarily a reliable source of visual quality measurement for
actual signals; and in addition, the predefined visual signal adds to
the overheads of transmission/storage.

In spite of the recent progress in related fields, objective evalu-
ation of picture quality in line with human perception is still a long
and difficult odyssey [38,123,156,157,163,183] due to the complex,
multi-disciplinary nature of the problem (related to physiology,
psychology, vision research and computer science), the limited
understanding of the HVS mechanism, and the diversified scope
of applications and requirements.

Despite the difficulties, perceptual visual quality evaluation
should be less demanding than computer vision in general, since
it can be performed without the need of emulating ‘‘the process
of discovering from images what is present in the world, and where
it is’’ (Marr’s words on vision [99]), in most meaningful and practi-
cal situations for visual quality evaluation. With proper modeling
of major underlying physiological and psychological phenomena,
it is possible to develop better visual quality metrics to replace
non-perceptual criteria widely used nowadays, in various specific
practical situations.
2.2. Organization of this paper

Due to the vast scope of this survey, we divide the main body of
the survey that follows into two parts for clearer presentation: in
Section 3 below, a review will be given on basic computational
modules in building various PVQMs; in Section 4, two major cate-
gories of PVQMs will be then discussed. The further rationale for
such a 2-step organization strategy is as follows.

The basic computational modules include signal decomposition
(decomposing an image or video into different color, spatial and
temporal channels), detection of common features (like contrast
and motion) and artifacts (like blockiness and blurring), just-
noticeable distortion (JND) (i.e., the maximum change in visual
content that cannot be detected by the majority of viewers), and
visual attention (VA) (i.e., the HVS’s selectivity to respond to the
most attractive activities in the visual field). First, many of these
are based upon the related physiological and psychological knowl-
edge. Second, most of them are independent research topics them-
selves, like JND and VA modelling, and have other applications
(image/video coding [10,194], watermarking [187], error resilience
[48], computer graphics [136], just to name a few) in addition to
PVQMs. Third, these modules can be simple PVQMs themselves
in specific situations (e.g., blockness and burring). After the discus-
sion of these basic building modules, we will be able to focus on
system-level issues related to the major PVQMs in Section 4.

In Section 5, we will compare six existing image quality metrics
(SSIM [167], VSNR [17], IFC [139], VIF [140], MSVD [42], and PSNR)
against the subjective viewing data, from seven publicly available
databases. These databases are with a wide variety of visual con-
tents and distortion types to enable a meaningful and convincing
benchmarking.

Before going to the main body of this paper, let us briefly ex-
plain several psychophysical phenomena that have been com-
monly used in PVQM development. The contrast sensitivity
function (CSF) denotes the HVS’s sensitivity toward signal contrast
with spatial frequencies and temporal motion velocities [73,155],
and exhibits a parabola-like curve with the increase of spatial
and temporal frequencies, respectively. Luminance adaptation re-
fers to the noticeable luminance contrast as a function of back-
ground luminance; for digital images, luminance adaptation
takes a parabola-like curve [23,67]. Visual masking is usually the
increase of the HVS’s contrast threshold for a signal in the presence
of another one; it can be divided into intra-channel masking [7] by
the signal itself, and inter-channel masking [13,82] by signals with
different frequencies and orientations.

For the convenience of the reader, the major abbreviations and
notations used in this paper are listed in Tables 1 and 2.
3. Basic computational modules

There have been basically two categories of PVQMs [183]: the
vision-based modeling and signal-driven approach. For the first
category [30,93,174,178], PVQMs are developed based upon sys-
tematical modeling of relevant psychophysical properties and
physiological knowledge, including temporal/spatial/color decom-
position, CSF, luminance adaptation, and various masking effects.
The second category attempts to tackle the problem from the view-
point of signal extraction and analysis, such as statistical features
[185], structural similarity [162], luminance/color distortion
[107], and the common visual artifacts (e.g., blockiness and blur-
ring) [100,189]. These metrics look at how pronounced the related
features are in image/video to estimate overall quality. This does
not necessarily mean that such metrics disregard human vision
knowledge, as they often consider psychophysical effects as well
(e.g., a JND model), but image content and distortion analysis
rather than fundamental vision modeling is the basis for design.

There are metrics making use of both classes. For example, a
scheme was proposed in [148] to switch between a model-based
scheme and a signal-driven one according to the extent of blocki-



Table 1
Major abbreviations used in this paper.

Abbreviation Explanation First
appearance

A57 An perceptual image quality database [32] Section 5.1
CG Computer graphics Section 4.3.3
CSF Contrast sensitivity function Section 2.2
CSIQ An perceptual image quality database [80] Section 5.1
DCT Discrete cosine transform Section 3.2.1
DMOS Differential MOS Section 5
DWT Discrete Wavelet Transform Section 3.3.1
FT Fourier Transform Section 3.4
FR Full-reference Section 4
HVS The human visual system Section 1
IFC An image quality metric [139] Section 2.2
IFT Inverse Fourier Transform Section 3.4
IVC An perceptual image quality database [12] Section 5.1
JND Just-noticeable distortion Section 2.2
LIVE An perceptual image quality database

[141]
Section 5.1

MAE Mean absolute error Section 1
MAE Mean opinion score Section 1
MOS Mean square error Section 1
MSVD An image quality metric [42] Section 2.2
NR No-reference Section 4
PSF Point spread function Section 3.2
PSNR Peak SNR Section 1
PVQM Perceptual Visual Quality Metric Section 1
QoE Quality of Experience Section 6
RF Random field Section 4.2.1
RMSE Root-mean-square error Section 5.2
RR Reduced-reference Section 4
SNR Signal-to-noise ratio Section 1
SSIM An image quality metric [167] Section 2.2
SVD Singular Value Decomposition Section 4.2.1
TID An perceptual image quality database

[131]
Section 5.1

VA visual attention Section 2.2
VIF An image quality metric [140] Section 2.2
VSNR An image quality metric [17] Section 2.2
WIQ An perceptual image quality database [40] Section 5.1

Table 2
Major notations used in this paper.

Notation Explanation First
appearance

A The FT amplitude Section 3.4
c A color (or luminance) channel Section 3.1
C DCT coefficient Section

3.3.1
CP Pearson linear correlation coefficient Section 5.2
CS Spearman rank order correlation coefficient Section 5.2
fs Spatial frequency Section 3.1
ft Temporal frequency Section 3.1
F The intensity, color or orientation map for an image Section 3.4bF The pixel-by-pixel contrast for F Section 3.4

FI The interpolation of F to the finer scale Section 3.4
g The weighted average of gradients Section

3.3.2
H Height of an image Section

3.2.2
(i, j) DCT subband index Section

3.3.1
I an image Section

3.2.2
JNDD DCT-based luminance JND Section

3.3.1
JNDp Pixel-based JND Section

3.3.2
Mh Horizontal blockiness Section

3.2.2
Mv Vertical blockiness Section

3.2.2
n DCT block index Section

3.3.1
N Image block size Section

3.2.2
r Orientation Section 3.1
R The VA map Section 3.4
s A decomposed signal component Section 3.1
sp Perceptual effect of s Section 4.1
Tl Luminance adaptation Section

3.3.2
Tt Texture masking Section

3.3.2
Ts_csf The base threshold for DCT-based JND due to the

spatial CSF
Section
3.3.1

v The object velocity perceived by the retina Section
3.3.1

vo The object velocity in the image Section
3.3.1

ve The eye movement velocity Section
3.3.1

W width of an image Section
3.2.2

(x,y) Pixel location Section 3.1
a} The elevation parameter for DCT-based JND due to

an effect }
Section
3.3.1

ainter The elevation parameter for DCT-based JND due to
inter-band masking

Section
3.3.1

aintra The elevation parameter for DCT-based JND due to
intra-band masking

Section
3.3.1

alum The elevation parameter for DCT-based JND due to
luminance adaptation

Section
3.3.1

DC The DCT coefficient difference between the
reference and test images

Section
4.2.1

DCp The perceptual distortion for DC Section
4.2.1

jlt A parameter accounting for the overlapping effect
between Tl(x,y) and Tt

Section
3.3.2

/ The FT phase Section 3.4
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ness in decoded video, and a model-based metric was applied to
blockiness-dominant areas in [197], with the help of a signal-dri-
ven measure.

Most vision-based PVQMs use signal decomposition in images.
The signal feature extraction and common artifact detection are
the core for many signal-driven PVQMs; the perceptual effect of
common imaging and compression artifacts far exceeds the extent
of their representation in the MSE or PSNR. The JND and VA models
have been used either independently or jointly to evaluate the visi-
bility and the perceived extent of visual signal difference. Therefore,
all these techniques help to address the four basic problems (as men-
tioned in the Introduction) to be overcome against the traditional
signal fidelity metrics, since they enable the differentiation of vari-
ous visual signal changes for perceptual quality evaluation purpose.

In this section, we review the existing work on these four topics,
namely, image/video decomposition, visual feature and artifact
detection, JND modelling, and VA map generation. We intend only
to a brief coverage of the first two topics since they are primarily
based upon adapting traditional filtering and image processing
techniques for the purpose of PVQMs. Based upon the major ideas
presented, the reader should be able to find more details with ref-
erences provided. The emphasis of this section is therefore for the
last two topics, with more analysis and discussion. A clear view of
all these modules facilitates not only the presentation of this paper
but also future research and new system development.

3.1. Image/video decomposition

It is well known [69,137,159] that the HVS has separate
processing for achromatic and chromatic signals, different visual
pathways for signals with fast and slow motion, and special cells
in the visual cortex for distinctive orientations. Psychophysical
experiments also demonstrate that visual signals are differentiated
with frequency [74,111] and orientation [82,129]. Therefore,
decomposition of an image or video into different color, spatial
and temporal channels facilitates the evaluation of signal changes
for unequal treatment of each signal component to emulate the
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HVS response, by enabling a system to address the fourth problem
of traditional metrics mentioned in the Introduction. A standard,
general process of visual signal decomposition is to derive
s(c, ft, fs,r,x,y), which represents a decomposed signal component,
with color (or luminance) c, temporal frequency ft, spatial fre-
quency fs, orientation r and location (x,y), respectively.

For the color representation, the opponent-color (B-W, R-G, and
Y-B) space [130,178], which is based on the physiological evidence
of the opponent cells in the parvocellular pathway, and the CIELAB
space [202], which is more perceptually uniform, can be used for vi-
sual quality evaluation. The YCbCr space is more convenient if the
compressed signal is dealt with (e.g., [87,194]) due to its wide use
in the image/video compression standards. Other color spaces have
also been used, e.g., the YOZ space [174]. However, it is often that
only the luminance component of the signal is used for efficiency
[119,145,197] because of its more important role in human visual
perception than chrominance components, especially in quality
evaluation of compressed images (it is worthwhile to point out that
most coding decisions are made based on the luminance manipula-
tions in the current image/video compression algorithms).

Temporal decomposition can be made via a sustained (low-
pass, with lower ft) and transient (band-pass, with higher ft) filters
[47,179] to stimulate two different visual pathways. Then, based
upon the fact that receptive fields in the primary visual cortex
resemble Gabor patterns [33] that can be characterized by partic-
ular spatial frequency fs and orientation r, many types of spatial fil-
ters (e.g., Gabor filters, Cortex filters [172], wavelets, Gaussian
pyramid [11], steerable pyramid filters [143,179]) can be used to
decompose each temporal channel.
3.2. Features and artifact detection

Detection of a number of signal features and artifacts is com-
mon to visual quality evaluation in diversified scenarios. First of
all, meaningful visual information is conveyed by contrast (that
of luminance, color, motion, etc.). A largely uniform picture carries
little or no information. The HVS perceives much more of signal
contrast than the absolute signal strength, because it has special-
ized cells to process signal contrast (rather than absolute signal)
[59,77]. This is also why contrast is central to CSF, luminance adap-
tation, contrast masking, visual attention, and so on.

In addition, certain structural artifacts occur in the prevalent sig-
nal compression and delivery process, which result in annoying ef-
fects to the viewer. Major coding artifacts include blockiness,
blurring, edge damage and ringing [142,198]. The traditional mea-
sures (MSE or PSNR) fail to reflect the perceptual effect of such
structural artifacts. In fact, blurring exists even in uncompressed
images and video due to the imperfect PSF (point spread function)
and out-of-focus of the imaging system, as well as object motion
during the signal capturing process [3,39]. Moreover, the effects
of motion and jerkiness have also been investigated [122,134,192]
since they distinguish the evaluation of video from that of images.
3.2.1. Contrast
In Peli’s work [128], local image contrast is evaluated by a band-

pass-filtered image and a lowpass-filtered one. Following a similar
methodology, contrast has been evaluated as the ratio of the com-
bined analytic oriented filter response to the low-pass filtered im-
age in the wavelet domain [184] or the ratio of high-pass and low-
pass responses in the Harr wavelet space [79]. Luminance contrast
was estimated as the ratio of the noticeable pixel change to the
average luminance in a neighborhood [87]. The contrast was also
calculated as a local difference of the reference video frame and
the processed one with the Gaussian pyramid decomposition in
[28], or by comparing DCT (discrete cosine transform) amplitudes
with the amplitude of the DC coefficient for the corresponding
block in [174].

For color and texture contrast [92], the k-means clustering
algorithm can be used to group all image blocks. The largest
cluster is viewed as the image backgroud. The contrast is then
calculated as the Euclidean distance from the means of the corre-
sponding background cluster. Motion contrast is obtained by
evaluating relative motion [92,191] (i.e., object motion against
the background).

3.2.2. Blockiness
The blocking artifact is a prevailing degradation caused by the

block-based DCT coding technique, especially under low bit-rate
conditions, due to the different quantization sizes used in the
neighboring blocks and the lack of consideration for inter-block
correlation. If an image I of size W � H is divided into N � N blocks,
the horizontal and vertical difference (discontinuity) at block
boundaries can be evaluated as [189]:

Mh ¼
XH=N�1

k¼1

XW�1

x¼0

ðIðx; k � N � 1Þ � Iðx; k � NÞÞ2
" #1=2

ð1Þ

for horizontal blockiness, and

Mv ¼
XW=N�1

l¼1

XH�1

y¼0

ðIðl � N � 1; yÞ � Iðl � N; yÞÞ2
" #1=2

ð2Þ

for vertical blockiness.
Variations of this method can be found in [107,121]. Object

edges at block boundaries can be excluded in blockiness consider-
ation [197]. Luminance adaptation and texture masking have re-
cently been considered for blockiness evaluation [199].

An alternative method for gauging blockiness is through har-
monic analysis [147], which may be used when block boundary
positions are unknown beforehand (e.g., with video being cropped,
re-taken by a camera, or coded with variable block sizes).

3.2.3. Blurring
Blurring can be effectively measured around edges in an image,

since it is most noticeable there and such detection is efficient (be-
cause edges only constitute a small fraction of all image pixels).
When the reference image is available, the extent of blur can be
estimated via contrast decrease on edges [87]. In the cases with
only a test image available, various blind methods to measure
the blur/sharpness in an image have been proposed with edge
spread detection [100,120], kurtosis [16,201], frequency domain
analysis [78,98], PSF estimation [190], width/amplitude of lines
and edges [35], and local contrast via 2-D analytic filters [180].

3.2.4. Motion and jerkiness
For visual quality evaluation of coded video, the major temporal

distortion is jerkiness which is mainly caused by frame dropping
[127] and is very annoying to the viewer that prefers continuous
and smooth temporal transition. For decoded video without avail-
ability of the coding parameters, frame freeze can be simply de-
tected by frame difference [85]; in the cases when the frame rate
is available, the jerkiness effect can be evaluated using the frame
rate [122,134,192] or more comprehensively, both the frame rate
and temporal activity (i.e., motion) [60,91]. The location, number
and duration of lost frames were estimated via inter-frame corre-
lation analysis in [109], while lost frames and the density of group
dropping were detected by inter-frame dissimilarity to measure
fluidity in [126,127], in which it was concluded that, for the same
level of frame loss, scattered fluidity breaks introduce less quality
degradation than aggregated ones. The impact of time interval be-
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tween occurrences of significant visual artifacts was studied in
[144].
3.3. Just-noticeable distortion (JND) modeling

As we mentioned in the Introduction, not every change in an
image is noticeable. The JND refers to a visibility threshold below
which a change cannot be detected by the majority (e.g., 75 %) of
viewers [67,72,85]. The JND modeling tackles the problem of visual
similarity, and reflects the local characteristics of the HVS. Obvi-
ously, if a difference is below the JND value, it can be ignored in vi-
sual quality evaluation.
3.3.1. Subband-based JND function
DCT-based JND is the most investigated topic among all sub-

band-based JND functions since DCT has been used in all existing
image/video compression standards such as JPEG, H.261/3/4,
MPEG-1/2/4, and SVC. The general form of the DCT-subband lumi-
nance JND function can be expressed as [85,150,173]:

JNDDðn; i; jÞ ¼ Ts csf ðn; i; jÞ
Y
}

a}ðn; i; jÞ; ð3Þ

where n is the index of the DCT block and (i, j) represents a subband
in this block, Ts_csf(n, i, j) is the base threshold due to the spatial CSF,
and a}(n, i, j) is the elevation parameter due to an effect }, such as
luminance adaptation, intra-band masking, inter-band masking,
temporal masking, and chrominance masking. The most practical
solutions so far in the literature for determining different parame-
ters in Eq. (3) are introduced as follows.

The widely-used formula developed by Ahumada and Peterson
[2] for the base-line threshold Ts_csf(n, i, j) firstly fits spatial CSF
curves in Fig. 1 with a parabola equation, which is a function of
spatial frequencies specified by (i, j) and background luminance,
and then compensates for the fact that the psychophysical experi-
ments for determining CSF were conducted with a single signal at a
time and with only spatial frequencies along one direction.
Fig. 1. Spatial CSF curves [2] (based upon the experiments in [155]) with seven
different background luminance levels (labeled in cd/m2).
Luminance adaptation factor alum(n) has been determined [203]
to represent the variation versus background luminance shown in
Fig. 2, for being more consistent with the findings of subjective
viewing for digital images [23,67,114].

Intra-band masking effect aintra(n, i, j) was addressed in [54,173]
by comparing the corresponding DCT coefficient C(n, i, j) against
Ts_csf(n, i, j) � alum(n):

aintraðn; i; jÞ ¼max 1;
Cðn; i; jÞ

Ts csf ðn; i; jÞ � alumðnÞ

���� ����f
 !

; ð4Þ

where f lies between 0 and 1.
Inter-band masking effect ainter(n, i, j) can be assigned with low-,

medium- or high-masking after classifying DCT blocks into
smooth, edge and texture ones [150,203], according to energy dis-
tribution among subbands.

As for the inclusion of temporal CSF effect, the velocity v(n) per-
ceived by the retina for an image block needs to be estimated [31],
and it is the object velocity vo(n) in the image (detected via block
matching or optical flow) after off-setting by the eye movement
velocity ve(n) (as determined in [31]):

vðnÞ ¼ voðnÞ � veðnÞ: ð5Þ

This is because the eye tracking toward a moving object reduces
v(n) appearing on the retina. A formula for incorporating the effect
of v(n) for temporal CSF in JND is given in [68].

The JND can also be defined in other frequency bands (e.g.,
Laplacian pyramid image decomposition [136], discrete wavelet
transform (DWT) [176,9,166]). In comparison with DCT-based
JND, significantly more research is needed for DWT-based JND, be-
cause DWT is a popular alternative transform, and more impor-
tantly, has similarity to the HVS in its multiple subchannel
structure and the frequency-varying resolution. In addition, chro-
minance masking [1] needs more convincing investigation for all
subband domains.

3.3.2. Pixel-based JND function
There are situations where JND estimated from pixels is more

convenient and efficient to use, e.g., motion search [194], video
replenishment [21], filtering of motion-compensated residuals
[195] and edge enhancement [88], since the operations are usually
performed on pixels rather than subbands. For quality evaluation
of images and video, pixel-domain JND models avoid unnecessary
subband decomposition.

Most pixel-based JND functions developed so far have used
luminance adaptation Tl(x,y) and texture masking Tt(x,y) (see
Fig. 2. Luminance adaptation for 8-bit images.



Fig. 3. Architecture of computational bottom-up VA model [62].
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description below). The general pixel-based JND model can be ex-
pressed as [195]:

JNDpðx; yÞ ¼ Tlðx; yÞ þ Ttðx; yÞ � jltðx; yÞ �min Tlðx; yÞ; Ttðx; yÞ
n o

;

ð6Þ

where (x,y) represents a pixel position, jlt(x,y) accounts for the
overlapping effect between Tl(x,y) and Tt(x,y), and 0 < jlt(x,y) 6 1.
Tl(x,y) can be determined by an approximation of Fig. 2 [23]. Tt(x,y)
can be estimated as:

Ttðx; yÞ ¼ b � gðx; yÞ; ð7Þ

where g(x,y) denotes the weighted average of gradients around
(x,y) [23]; b takes smallest, medium and largest values for smooth,
edge and texture neighborhood, respectively [89,195], because the
masking effect in smooth regions can be largely neglected and dis-
tortion around edge is easier to be noticed than that in textured
regions.

The models in [21,23] appear to be two special cases of this gen-
eralized formula (6), when Tl(x,y) is assumed to have the dominant
effect and the maximum effect of Tl(x,y) and Tt(x,y) is used,
respectively.

The temporal effect was addressed in [22] by multiplying (6)
with an elevation parameter increasing with inter-frame changes.
The major shortcoming of pixel-based JND modeling lies in the dif-
ficulty of incorporating CSF explicitly, except for the case with con-
version from a subband domain [204].

3.4. Visual attention (VA) map generation

As we mentioned in the Introduction, not every difference of an
image receives the same attention level (the second problem). This
is due to the fact that the HVS selects a part of the visual signal for
detailed analysis and then responds. The VA refers to the selective
awareness/responsiveness to visual stimuli [24,76], as a conse-
quence of the human evolution.

There are two types of cues that direct attention to a particular
point [133]: the bottom-up ones that refer to the external stimuli,
while the top-down ones caused by a voluntary shift in attention
(e.g., when the subject is given a prior information/instruction
for directing the attention to a location/object). The VA process
can be regarded as two stages [125]: in the pre-attentive stage,
all information is processed across the entire visual field; in the
attention stage, the features may be bound together (feature inte-
gration [152], especially for a bottom-up process) or the dominant
feature is selected [34] (especially for a top-down process).

Most existing computational VA models are bottom-up, i.e.,
based upon contrast evaluation of various low-level features in
images, in order to determine which locations stand out from their
surroundings. As to the top-down (or task-oriented) attention,
there is still a call of more focused research, although some initial
work has been done, e.g., [55,113].

An influential bottom-up VA computational model was pro-
posed by Itti et al. [62] for still images. An image is firstly low-pass
filtered and down-sampled progressively from scale 0 (the original
image size) to scale 8 (1:256 along each dimension); so the higher
the scale index, the smaller the image size. This is to facilitate the
calculation of feature contrast, which is defined as:

bF ðe; qÞ ¼ FðeÞ � FIðqÞ
��� ���; ð8Þ

where F represents the map for one of the image features as fol-
lows: intensity, color and orientation; e 2 2,3,4 and F(e) denotes
the feature map at scale e; q = e + d, with d 2 3,4, and FI(q) is the
interpolation to the finer scale e from the coarse scale q. In essence,bFðe; qÞ evaluates pixel-by-pixel contrast for a feature, since F(e) rep-
resents the local information while FI(q) approximates the
surroundings.

With one intensity channel, two color channels and four orien-
tation channels (0�,45�,90�,135�; detected by Gabor filters), there
are 42 feature maps computed: six for intensity, 12 for color, and
24 for orientation, as illustrated in Fig. 3. After cross-scale combi-
nation and normalization, the winner-take-all strategy localizes
the most interested location on the map.

There is an alternative approach to detect bottom-up VA. Given
an image I(x,y), its Fourier Transform (FT) is FT(I(x,y)) = A(u,v)ej/

(u, v), where A(u,v) and /(u,v) represent the FT amplitude and phase
respectively. The VA map can be determined as [58]:

Rðx; yÞ ¼ IFT ej/ðu;vÞ� �
; ð9Þ

where IFT denotes the Inverse Fourier Transform. Eq. (9) implies
that A(u,v) is forced to be unity. Since A(u,v) is the spectrum of spa-
tial distribution (u,v) in the image, a unity A(u,v) in Eq. (9) actually
treats all (u,v) components to be with equal occurrence after IFT,
i.e., the spatial components which have big difference (contrast)
with the rest stand out; this is of similar objectives with Itti et
al.’s model [62], although the approach adopted is different. Itti et
al.’s model [62] is preferred if certain features (like orientation)
need to be treated differently in a specific circumstance or new fea-
tures are added (since the architecture in Fig. 3 is open), while the
FT based approach [58] is more computationally efficient.

The VA map along the temporal dimension (over multiple con-
secutive video frames) can also be estimated. In the scheme pro-
posed in [92] for video, different features (such as color, texture,
motion, human skin/face) were detected and integrated for the
continuous (rather than winner-take-all) salience map. In the work
of Ma et al. [95], aural attention was also considered and integrated
with visual factors. It was done by evaluating sound loudness and
its sudden change, and the support vector machine (SVM) was em-
ployed to classify each audio segment into speech, music, silence,
and other sounds; the ratio of speech/music to other sounds was
measured for saliency detection.

The contrast sensitivity reaches its maximum at the fovea and
decreases towards the peripheral retina. The JND model represents
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the visibility threshold when the attention is there. In other words,
JND and VA account for the local and global responses of the HVS in
appreciating an image, respectively. The overall visual sensitivity
at a location in the image could be the JND modulated by the VA
map [92]. Alternatively, the overall visual sensitivity may be de-
rived by modifying the JND at every location according to its eccen-
tricity away from the foveal points, with the foveation model in
[169].

VA modeling is more meaningful for video than still images. If
an observer has time long enough to perceive an image, many
points of the image may become the attention center eventually.
The perception to video is different. Every video frame is displayed
to an observer within a limited time interval. Furthermore, motion
may cause the viewer to pay attention to the moving part and trig-
ger subsequent eye movement.

4. Perceptual visual quality metrics (PVQMs)

As introduced at the beginning of Section 3, there are two major
categories of PVQMs: the vision-based modeling and signal-driven
approach, according to the methodology being used. We can also
classify PVQMs with regard to reference requirements: double-
ended and single-ended. Double-ended metrics require both the ref-
erence (original) signal and the test (processed) signal, and can be
further divided into two subclasses: reduced-reference (RR) metrics
[57,185] that need only part of the reference signal and full-refer-
ence (FR) ones [17,139,140,167]) that need the complete reference
signal. Single-ended metrics use only the processed signal, and are
therefore also called no-reference (NR) ones [35,120,189]. Most
existing PVQMs (almost all vision-based PVQMs and many signal-
driven ones) are FR ones, which are expected to predict visual qual-
ity more accurately because more information is available as the
ground of prediction.

The task of developing PVQMs can be usually considered as a
two stage process: (a) feature detection and (b) pooling the fea-
tures into a single number to represent the quality score. For the
rest of this section, we will elaborate on several well referenced
PVQMs (with emphasis on signal-driven ones because they repre-
sent more for the recent development), compare their differences,
provide the links to some alternative solutions, and discuss some
related issues that currently draw interests of the research com-
munities and deserve more in-depth research.

4.1. Model-based PVQMs

As the simplest model-based approach, the HVS is regarded as a
single spatial filter characterized by the spatial CSF, and such early
models have been developed for images [43,97] and video
[94,151]. More sophisticated model-based approaches have been
researched [30,93,174,178], and are usually with FR and multi-
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Fig. 4. Illustration of m
channel signal decomposition as described in Section 3.1 together
with evaluation of local contrast, spatiotemporal CSF and contrast/
activity masking.

An early FR and multi-channel model called the visible differ-
ence predictor (VDP) was reported by Daly [30], where the HVS
model accounts for sensitivity variations due to luminance adapta-
tion, spatial CSF and contrast masking. Cortex transform is per-
formed for signal decomposition, and different orientations are
distinguished. Most existing schemes in this category follow a sim-
ilar methodology as illustrated in Fig. 4, with difference in the color
space adopted, spatio-temporal decomposition, and rules for error
pooling. In the JNDmetrix model [28,93], the Gaussian pyramid
[11] was used for decomposition with luminance and chrominance
components in video. Gabor-related filters were used in [154],
while the opponent color space (W-B, R-G and B-Y) and steerable
pyramid filters were adopted in [178]. The work of [119] empha-
sizes on the distortion in spatial transitions. Decomposition are
also carried out in the DCT [174] and wavelet [102] domains,
respectively.

After signal decomposition (as described in Section 3.1 and the
previous paragraph) in FR situations and if we follow the notations
in Section 3.1, s(c, ft, fs,r,x,y) represents the decomposed signal
component, and its perceptual effect can be derived by considering
the inter-channel masking [175,179], as the contrast gain control
part in Fig. 4:

spðc; ft ; fs; r; x; yÞ ¼ n
sðc; ft ; fs; r; x; yÞq

.þ wðc; ft; fs; r; x; yÞ � sðt; c; f ; r; x; yÞm
; ð10Þ

where n is a constant gain factor, . is another constant to prevent
division by zero, the excitatory part (the numerator) consists of a
power-law nonlinearity of s(c, ft, fs, r,x,y) with exponent q, and the
inhibitory part (the denominator) basically is s(c, ft, fs,r,x,y) with an-
other exponent m convoluted with a pooling function w(c, ft, fs, r,x,y)
(e.g., a Gaussian kernel [179]). Eq. (10) aims at emulating the HVS
masking phenomenon with different subbands, orientations, colors,
frames and locations, for both reference and distorted video as illus-
trated in Fig. 4; it provides the inputs for feature pooling. The
weighting parameters of channels in Section 3.1 and all parameters
in Eq. (10) can be determined via the fitting of the model to CSF and
contrast masking curves [179], or subjective viewing test scores
[182,197].

4.2. Signal-driven PVQMs

More recent research effort has been directed to signal-driven
PVQMs because model-based ones involve expensive computation
and difficulties due to the gap between the knowledge for vision
research (usually with simplistic, single stimulus (or two stimuli))
and the need for engineering modeling (for real-world, multiple
stimuli).
rast Gain 
ontrol

sp(c,ft,fs,r,x,y)

ast Gain 
ntrol

Feature 
Pooling

Distortion
Measure 

sp’(c,ft,fs,r,x,y)

odel-based PVQMs.



304 W. Lin, C.-C. Jay Kuo / J. Vis. Commun. Image R. 22 (2011) 297–312
In comparison with model-based PVQMs, signal-driven ones do
not attempt to build a comprehensive HVS model with regard to
quality evaluation. Instead, they concentrate on signal modelling
or processing of visual signals under consideration, and may
incorporate appropriate domain knowledge (such as relevant com-
pression/transmission artifacts). This approach is relatively less
sophisticated and, therefore, computationally inexpensive. The sig-
nal-driven PVQMs can be of FR [140,162], RR [185] or NR
[15,100,189].

4.2.1. Metrics with reference
For FR cases, if we follow the notations in Section 3.3.1 for JND,

the DCT coefficient difference of the reference image Ca(n, i, j) and
that of the test one Cb(n, i, j) is: DC(n, i, j) = Ca(n, i, j) � Cb(n, i, j); the
DCTune system [173] measures perceptual distortion with the
DCT-based JND as:

DCpðn; i; jÞ ¼ DCðn; i; jÞ=JNDDðn; i; jÞ: ð11Þ

When JNDD(n, i, j) is larger, the perceived distortion is less for a same
amount of DC(n, i, j). A similar measure is defined with the pixel-
based JND [87], and the resultant metric can be used for video with
visual distortion and/or enhancement (to tackle the third problem
highlighted in the Introduction), since noticeable contrast increase
and decrease are distinguished for edges and non-edge.

An important aspect of the HVS perception is its sensitivity to
image structure. The well cited SSIM (Structural SIMilarity) index
was introduced by Wang and Bovik [165,167], and this FR metric
can be expressed as

Q ¼ rab

ra � rb
� 2ra � rb

ðraÞ2 þ ðrbÞ2
� 2�a � �b
ð�aÞ2 þ ð�bÞ2

; ð12Þ

where a and b denote the original and the test images, �a and �b are
their means, ra and rb are the corresponding standard deviations,
and rab is the cross covariance. The three terms in Eq. (12) measure
the loss of correlation, contrast distortion and luminance distortion,
respectively. The dynamic range of Q is [�1,1], and the best value is
achieved if and only if a = b. Although SSIM bears certain similarity
with MSE [36], the differentiating factor is the consideration of
structural information. Singular Value Decomposition (SVD) is an-
other way for feature detection with structural consideration to
evaluate image quality using singular values (as MSVD [42]) or sin-
gular vectors [112].

With more theoretical ground, the VIF [140] (as an extension of
IFC [139]) is based upon the assumption that the random field (RF)
from a subband from the test image, D, can be expressed as:

D ¼ GU þ V ; ð13Þ

where U denotes the RF from the corresponding subband from the
reference image, G is a deterministic scale gain field, and V is a sta-
tionary additive zero-mean Gaussian noise RF. The proposed model
takes into account additive noise and blur distortion; it is argued
that most distortion types prevalent in real world systems can be
roughly described locally by a combination of these two. The resul-
tant metric based upon this model measures the amount of infor-
mation that can be extracted about the reference image from the
test one. In other words, the amount of information lost from a ref-
erence image as a result of distortion gives the loss of visual quality.

Another image metric with more theoretical ground is the VSNR
[17] which operates in two stages. In the first stage, the contrast
threshold for distortion detection in the presence of the image is
computed via wavelet-based models of visual masking and visual
summation, in order to determine whether the distortion in the
test image is visible. If the distortion is below the threshold of
detection, the test image is deemed to be of perfect visual fidelity
(VSNR = infinity). If the distortion is above the threshold, a second
stage is applied, which operates based on the property of perceived
contrast, and the mid-level visual property of global precedence.
These two properties are modeled as Euclidean distances in distor-
tion-contrast space of a multiscale wavelet decomposition, and
VSNR is computed based on a simple linear sum of these distances.

For RR PVQM development for video, low-level spatial–tempo-
ral features from the original video are extracted as the reference
(instead of the whole image). In the work performed by Wolf and
Pinson [185,186], both spatial and temporal luminance gradients
are computed, to represent contrast, motion, amount and orienta-
tion of activity. Temporal gradients due to motion facilitate detect-
ing and quantifying related impairments (e.g., jerkiness) using the
time history of temporal features. Features from the reference vi-
deo can be compared with those from the test video. The metric
performed well in the VQEG FR-TV Phase II Test [157]. For another
RR metric proposed in [57], spatial features are computed for the
luminance image, and temporal features are obtained by the frame
difference and global motion detection.

4.2.2. Metrics without reference
NR evaluation is closer to the HVS perception since human

being does not need an explicit reference in judging picture qual-
ity. It also tends to be computationally efficient since processing
reference data is not required. However, this often requires a priori
knowledge about the distortions of visual signals to be evaluated.
Thus, it is likely to be domain specific.

The models discussed in Section 3.2 can serve as or combine to
be NR metrics. Examples of single-factor NR PVQMs are those for
blockiness [147,189], blurring [100,190] and jerkiness [18,192]. A
metric was devised in [101] for combining both blur and ringing
measures in JPEG200 coded images. Blockiness, blurring and jerki-
ness were assessed together in [181]. Six spatial and temporal fac-
tors, namely, jerkiness, blurring, orientation, brightness and
unstableness, were used in [104] for home video quality evaluation.
Recently, video is classified into four visual content classes [117],
and then a different NR metric is applied to a different class of video,
since a single metric cannot be well tuned for all situations.

The concepts of just noticeable blockiness and blur have been
proposed in [199,46], respectively. Blockiness detection was com-
bined with consideration of HVS sensitivity, luminance adaptation,
temporal masking, and intra- and inter-coefficient spatial masking
(all these are factors being accounted for JND), in the DCT domain
in [29]. In [83], picture quality is evaluated based on blur/sharp-
ness and ringing measurements weighted by the pixel-based JND.

Another challenge for NR metrics is the possibility of mistaking
the actual content as distortion. Note that separation of the content
from distortion can be performed in the FR case (e.g., object edges
are separated from blockiness [197]), and this is more difficult in
the NR circumstance. In addition, end-to-end VPQMs would be
useful by combining bitstream (without full decoding) and net-
work loss analysis [183] for real-time, multi-channel quality mon-
itoring (e.g., over IP networks), and therefore remain as a
challenging research area.

4.3. More discussion on related issues

4.3.1. Feature pooling
Besides feature detection, feature pooling plays a crucial role to

the success of PVQMs. For quality gauge of images and video, eval-
uation of all features (for both model-based and signal-driven met-
rics) has to be summarized to a single-number result, in analogy
with the integration of various channels with the primary cortex
in the brain.

For the majority of the existing models developed so far, inte-
gration has been accomplished by a percentile evaluation [28],
simple summation [42,71], linear (i.e., weighted) combination
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[107,28] or Minkowski pooling [38,174,178]. These pooling tech-
niques, however, impose constraints on the relationship between
the features and the quality score. For example, a simple summa-
tion or a weighted combination of features implicitly constraints
the relationship to be linear, while the use of Minkowski metric
for spatial pooling of the features/errors implicitly assumes that er-
rors at different locations are statistically independent.

In [170], a method known as information content-weighted
pooling has been presented, in which the weights are determined
by local image content, assuming that the image source is a local
Gaussian model and the visual channel is an additive Gaussian
model. Pooling can be accomplished by accounting for VA and
quality difference within an image (i.e., giving higher weights to
low quality portion) [110]. In [107], since five types of impairments
after low-pass filtering, blockiness assessment, correlation evalua-
tion, masking analysis, and luminance adaptation and spatial CSF
consideration are not entirely independent, the principal compo-
nent analysis (PCA) is carried out to yield a quality index for a de-
coded image against its original. More recently, machine learning
techniques have emerged as a way for pooling [112,117], due to
their generalization capability with massive, high dimensional
data, through training. More in-depth research is needed to explore
if such a data driven approach provides better solutions.

Another aspect of pooling is to account for temporal effects. So
far video evaluation is largely formulated as some form of averag-
ing of multiple video frames. There have been continuing effort to
combine spatial and temporal factors (spatiotemporal CSF formu-
lation [68,177] and temporal error evaluation [4,116,168] in a bet-
ter-grounded manner).
4.3.2. Variations of viewing conditions
External factors to be considered in PVQMs are variations of

viewing conditions, e.g., ambient illumination, display resolution
and viewing distance. The effect of viewing distance is actually re-
lated to display resolution. There has been limited research on the
influence of the viewing distance, and the issues related to ambient
illumination are largely uninvestigated. The VSNR metric [17] has
been devised with the viewing distance of roughly 3.5 times of
the image height, and claimed to provide a reasonable approxima-
tion of typical viewing conditions. The SSIM has been extended to
multiple scales [171] by firstly downsampling both the reference
and test images into different image resolutions (i.e., scales), and
then replacing the first two terms in Eq. (12) (i.e., the measures
of loss of correlation and contrast distortion) with the product of
their counterparts in all scales, while the last term (luminance dis-
tortion) remains unchanged (still evaluated at the original resolu-
tion). However, the multi-scale SSIM does not always yield better
results than its single-scale version [132]. Multi-scale has also been
exploited in IFC [139] and VIF [140] via the steerable pyramid
transform. Multi-scale is just a way more to compromise the effect
of different viewing settings than to cater for a particular setting. In
addition, it is still a problem on how to pool the calculated errors
from different scales and decouple the overlapping among differ-
ent scales.

A simple, empirical method [164] has also been proposed for
SSIM to determine the downsampling scale Z for evaluating images
viewed from a typical distance:

Z ¼ maxð1; roundðH=256ÞÞ; ð14Þ

where H is the image height. There are not explicit parametric
choices for viewing condition variations in the major existing
PVQMs. Obviously it remains a challenge in future research for met-
rics to account for viewing-condition variations (display resolution,
ambient illumination and viewing distance) more convincingly for
both benchmarking and practical use. The publicly available image
databases and their viewing conditions will be presented and dis-
cussed in Section 5.1.

4.3.3. PVQMs for computer-generated visual signal
For computer graphics and animation, existing PVQMs have be-

gun to find applications, with new, specific metrics to be devel-
oped. The model-based metric originally devised for natural
images [93] was used in [8] for visual signal synthesis. In [14],
the signal-driven metric devised with spatiotemporal CSF model
and compensated by the eye movement [31] has been combined
with a VA model, to predict error visibility in image rendering. A
JND-based metric was used in indirect illumination calculation
[136], accounting for the spatial CSF and luminance adaption. Per-
ceptual quality criteria have been devised [19,149,193] according
to mesh and texture resolutions, for transmission of 3D geometric
mesh vertices and texture data. Other relevant work can be found
in [5,75,135].

Human perception modeling can play an important role
[20,37,45,149] in most computer graphics (CG) tasks. As pointed
out by Tumblin and Ferwerda in [153], ‘‘the goal of computer graph-
ics is not to control light, but to control our perception of it’’. Unlike in
the cases of natural images and video, we do not have the original
visual signal as the reference in CG so perception is the only crite-
rion for processing.

Computer-generated signals have their own characteristics, sta-
tistics and requirements, in comparison with those acquired via
cameras. In addition, some information that is hard to obtain in
natural images is actually available in the CG cases; examples of
such information are segmentation, depth, etc. The PVQMs specific
to CG and animation are relatively primitive. So it is reasonable to
expect more research to emerge in the area; this is also because
graphics and animation become increasingly indispensable in
many applications and services.

4.3.4. The role of VA
There is no doubt that VA is important to the HVS perception.

However, there are diversified and even controversial views toward
its role in visual quality evaluation. Improvement has been reported
by using the VA map to weight a quality map for perceptual quality
prediction [90,92,110] and to guide CG rendering [14,75]. On the
other hand, it has been argued that VA is not always beneficial for
PVQMs (at least for simple weighting) [115]. Even when metrics
were reported to be improved using recorded VA data (via a eye
tracker) [81], it has been also observed that greater improvement
was found with VA recorded in task-free viewing than in the cases
of subjects being asked to assess the picture quality. This seems to
be related to top-down (task-oriented) aspect of VA.

Visual quality may be influenced by not only attentional re-
gions, but also non-attentional ones, since as introduced in Section
3.4, the HVS’s visual information processing is over the whole vi-
sual field in the pre-attentive stage of VA. Therefore, besides the
quality of attended regions, that of unattended regions needs to
be properly fused into the overall quality index, as an early attempt
in [196]. Some research argued that distortion in image compres-
sion (with JPEG and JPEG 2000 artifacts) and transmission (with
packet loss) change the subjects’ eye fixation and the associated
duration [158], while another work indicated that there is not
obvious difference in the VA maps between a test video sequence
and its original [105]. In summary, VA’s influence on visual quality
evaluation is still an open issue for research.
5. Databases and performance evaluation for PVQMs

Subjective viewing data are essential for verification of various
VPQMs. The ITU has standardized methods to conduct subjective
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viewing tests [63–65], to promote acceptance and facilitate sharing
of the resultant MOS and DMOS (differential MOS). For fair bench-
marking, the developed PVQMs must be evaluated with a wide
variety of visual contents and distortion types to make meaningful
conclusions about their performance. It is therefore more convinc-
ing to use multiple databases with MOS/DMOS from different
sources since evaluation with one single database may not be com-
prehensive and general [146]. In this section, we demonstrate this
for FR signal-driven image metrics.

We choose the better cited metrics for comparison and these
metrics are formulated for quality evaluation in general (i.e., with-
out prior knowledge on distortion), rather than that for certain
type(s) of distortion. The objective of the benchmarking in this
work is the comprehensive evaluation across different databases
and with various distortion types together.
5.1. Public image databases with MOS/DMOS

There are publicly available subjective viewing databases for
images: LIVE [141], CSIQ [80], IVC [12], Toyama [56], A57 [32],
TID [131] and WIQ [40]. The important information about these se-
ven databases is listed in Table 3. As can be seen, the types of dis-
tortion vary across the databases; there are two different types of
subjective quality scores being used: MOS and DMOS, and their
ranges are different. There are a total of 3832 distorted (test)
images with all these databases.

There has been some control on the viewing distance and illu-
mination in most of the databases we used in this work. The view-
ing distance is 4 times of the image height for IVC and WIQ, and 6
times of the image height for Toyama, while it is kept at about 3–
3.75 times of the image height for most images in LIVE. For CSIQ,
subjects were instructed to keep the viewing distance stable of
approximately 80 cm, with image resolution of 1920 � 1200.
Viewing conditions were not fully controlled in A57 and TID, to
emulate practical scenarios where variations in viewing distance
are difficult to control. The experiments in the majority of the dat-
abases are performed with normal indoor lighting, while those of
WIQ (with 80 images) are done in dark rooms.

The TID database contains the largest number of test images
among the seven; its MOS is the result of 654 subjects from three
different countries (Finland, Italy and Ukraine), and more than 200
subjects rated each image, while 7–30 subjects were used for the
other databases. In addition, TID covers more distortion types,
and contains more less common distortion types (to be discussed
in Section 5.3 below).
Table 3
Description of image databases (n0: number of original images; n: number of test images;
size like 480 � 720, 632 � 505, 634 � 505, 618 � 453 and 610 � 488); S: type of subjectiv

Name n0 n R S (range) Dist

LIVE 29 779 (See notes) DMOS (0–100) JPEG
Ray

CSIQ 30 866 512 � 512 DMOS (0–1) JPEG
Gau

10 185 512 � 512 MOS (0–5) JPEG
blur

Toyama 14 168 768 � 512 MOS (1–5) JPEG
A57 3 54 512 � 512 DMOS (0–1) LH-

nois
wit

TID 25 1700 512 � 384 MOS (0–9) Add
nois
com
ecce
ove

WIQ 7 80 512 � 512 DMOS (0–100) Wir
ima
5.2. Image metric benchmarking

We will demonstrate the performance comparison for several
existing major FR image metrics described earlier: SSIM [167],
VSNR [17], IFC [139] and VIF [140] and MSVD [42], with reference
of PSNR. For VSNR, VIF, IFC and SSIM implementation, we have
used the publicly accessible Matlab package [49]; they are the ori-
ginal codes provided by the respective algorithm designers. The
MSVD method was also implemented in MATLAB. The image scale
for SSIM has been decided via Eq. (14), and this provides better
performance than the cases without scaling. In the experiments
of this work, we have maintained all metric parameters the same
for different databases since there are not explicit parametric
choices for viewing condition variations with these metrics, as
mentioned in Section 4.3.2.

A 5-parameter logistic mapping specified in [156] between the
objective outputs and the subjective quality ratings was employed,
to remove any nonlinearity due to a subjective rating process and
to facilitate the metric comparison in a common analysis space.
There are two criteria commonly used for performance compari-
son, namely: Pearson linear correlation coefficient CP (for predic-
tion accuracy), and Spearman rank order correlation coefficient
CS (for monotonicity), between the MOS/DMOS and the objective
prediction, and 0 6 CP, CS 6 1. For a perfect match between the
objective and subjective scores, CP = CS = 1. The performance can
be also measured by the root-mean-square error (RMSE) between
the MOS (or DMOS) and the metric output.

From the results with above-mentioned databases, we plotted
CP, CS and the associated 95% confidence interval (CI) [25,156] in
Figs. 5 and 6, for different metrics with luminance images. We
can see that CP and CS give fairly consistent results. The RMSE mea-
sure also tell a similar story as CP and CS so its results are not pre-
sented here to save space. We can see from the figure that the
perceptual metrics under comparison outperform PSNR in general.
We note that VIF outperforms its predecessor IFC in most cases as
expected, and SSIM and VIF are better metrics due to their overall
performance over different databases.

As can be seen from the comparison of CP, CS and the CI in Figs. 5
and 6 between the two better performing metrics, VIF outperforms
SSIM with a clear margin (i.e., non-overlapped CIs) in LIVE and
CSIQ; for the other five databases, VIF and SSIM tells a mixed story:
one metric is better than the other in some cases and the CIs are
overlapped for all cases.

The performance of all five perceptual metrics is relatively bad
on WIQ database which contains more than one artifact (like
R: image resolution (notes: LIVE has many images of size 768 � 512, but also of other
e quality score).

ortion types

-2 K compression; JPEG compression; White Gaussian noise; Gaussian blurring;
leigh-distributed bit errors of JPEG -2 K stream or Fast fading distortion

compression; JPEG-2 K compression; global contrast decrements; additive pink
ssian noise; additive white Gaussian noise
-2 K compression; JPEG compression;LAR (locally adaptive resolution) coding;
ring
-2 K compression (with JasPer s/w);JPEG compression (with cjpeg s/w)

subband quantization of a 5-level DWT with 9/7 filters; additive Gaussian white
e; baseline JPEG compression; JPEG-2 K compression; JPEG-2 K compression

h greater to fine spatial scales to preserve global precedence; blurring
itive Gaussian noise; spatially correlated noise; masked noise; high frequency
e; impulse noise; quantization noise; Gaussian blur; image denoising; JPEG
pression; JPEG-2 K compression; JPEG transmission; JPEG-2 K transmission; non
ntricity pattern noise; block-wise distortion of different intensity; mean shift;

rall contrast change
eless imaging artifacts, which are not considered in other publicly available
ge quality databases



Fig. 5. CP of different metrics for various databases (with 95% CI indicated).

Fig. 6. CS of different metrics for various databases (with 95% CI indicated).
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blocking and ringing together in a same image) due to the complex
nature of a wireless communication link. For the A57 database, the
performance of VIF, SSIM, MSVD and IFC is also relatively poor for
the similar reason; however, VSNR which performs well for A57
database does not perform as well with the other databases. For
TID, the metric performance is not high because it contains more
distortion types, as well as some less-common data (to be ex-
plained next). From the results presented above, we can see that
testing with just a single database is not sufficient to evaluate a
metric.

5.3. Evaluation with the less-common dataset in TID

We tested a subset of 500 images in the TID database, with 100
images from each of the following five distortion/change types
[131,132]: mean (intensity) shift, contrast change, image denois-
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ing, non eccentricity pattern noise, and local block-wise distortion
of different intensity. These types of distortion are less common
because they are only available in TID.

The mean shift and contrast change (up to a certain level) gen-
erally do not affect the visual quality substantially although the
PSNR may change considerably. The denoised images were ob-
tained after applying different denoising filters. The PSNR of deno-
ised images is generally higher than that of the noisy images,
although some denoised images visually look worse than the cor-
responding noisy images [131]. For non-eccentricity distortion, a
small image fragment of size 15 � 15 pixels has been randomly
copied from a nearby location (with distance of a few pixels) in
the reference image. Due to the high correlation between the cop-
ied block and the replaced one, such error is not easy to be per-
ceived by the HVS (so PSNR tells little about image quality). As
for the local block-wise distortion, there are four levels of distor-
tion: the 1st to 4th levels of distortion have 16, 8, 4 and 2 blocks
being distorted in each image, but are associated with decreasing
PSNR each level upward. An image in which two blocks were cor-
rupted (i.e., the 4th distortion level) is perceived as having a better
visual quality (although it has smaller PSNR) than the image with
16 corrupted blocks (i.e., the 1st distortion level); this is because
a lower amount of distortion spreads over a larger area is likely
to cause more quality degradation than a higher amount of distor-
tion spreads over a smaller area.

Fig. 7 shows CP (CS is not shown because of its similar results)
for different metrics with the set of 500 images. All PVQMs under
consideration have lower CP, compared with the corresponding re-
sults in Fig. 5, although they do much better than PSNR. The reason
for SSIM to have relatively better performance than other metrics
is its consistence (as to be explained next) with different types of
distortion. In [80], SSIM, VSNR, and VIF have been compared with
four individual types of the aforementioned distortion: image
denoising, non eccentricity pattern noise, local block-wise distor-
tion, and mean shift; according to the CS results reported in [80],
VSNR and VIF are the best metrics for the first two types of distor-
tion respectively, while SSIM is the best metric for the last two
types of distortion; more importantly, SSIM performs fairly consis-
tently over the four distortion types, as contrasted with VIF and
VSNR [80]. As can be seen from Figs. 5–7, although both VIF and
VSNR have better theoretical grounding, they do not perform
equally well for all the test datasets, and do not perform better
Fig. 7. CP for different metrics with the subset of 500 images in TID (with 95% CI
indicated).
than the simpler SSIM in terms of consistency. This may be attrib-
uted to the limitation of the assumptions made for these two met-
rics (please refer to the relevant formula and description for VIF
and VSNR in Section 4.2.1).
6. Concluding remarks

Perceptual visual quality assessment aims at quantifying the
quality of visual information, including still pictures and video. It
can be extended to 3D models, computer graphics, animation,
and 3D and multi-view visual data. This is an interdisciplinary field
involving vision science, color science, signal processing, physiol-
ogy, psychology and computer engineering. Many processes can af-
fect and impair the quality of visual signals, including acquisition,
compression, transmission, display, printing, and reproduction.
Automatic visual quality assessment is crucial to multimedia sys-
tems by providing objective metrics for use during the design,
implementation, optimization and testing stages, to avoid or re-
duce the need for extensive evaluation with human subjects (even
in cases of human evaluation being possible).

This work has highlighted the importance, the challenges and
the advances in objective, automatic visual quality assessment to
align well with the human perception. Although the perceptual
visual quality evaluation proves to be a difficult task, a consider-
able amount of research and development efforts has been directed
to it and its applications, as surveyed in this paper and evidenced
by the large number of cited references, as well as the recent
dedicated annual workshops [26,27], special journals issues
[51,70,106,118], and many special sessions in related conferences.
A significant progress has been achieved in transferring relevant
latest physiological and psychological findings, modeling various
basic computational modules, and designing useful perceptual vi-
sual quality metrics (PVQMs). In addition, in spite of the fact that
the PVQM technology is still in its infancy stage, there have been
some industrial deployments [53,61,86], especially in the test
equipment and manufacturing sectors, since a reasonable PVQM
can be a differentiating factor to gain the competitive advantage.
Based on the information collected from industrial contacts of
the authors and Internet search, much more companies buy into
PVQM-related ideas than five years ago, toward better consumer
QoE (quality of experience).

Performance benchmarking for the commonly used image met-
rics has been demonstrated with open source codes and publicly
available databases. The state of the art techniques can perform
better than PSNR as being shown in this work, and need further
advancement in terms of prediction accuracy, consistence and
robustness.

With the survey presented earlier in this paper, we know that
the following important aspects are relatively less investigated:
temporal modeling for video (for JND, VA and others), chrominance
evaluation toward a complete model, and joint multimedia (video,
speech, audio, text, and so on) modeling. Signal-driven PVQMs
have attracted substantial research efforts during the recent years.
No-reference (NR) metrics can be less computationally expensive
and adopted in a wider range of circumstances (even when the ref-
erence is not available), and therefore deserve more attention from
researchers. Compressed-domain quality evaluation is useful be-
cause of the presence of a large number of coded visual signals
at user/relay sites nowadays, as well as joint consideration of net-
work loss (so that end-to-end quality control is possible). More re-
search is therefore expected for joint distortion consideration of
compression and transmission. For feature pooling, the machine-
learning approach has good potential for generalization of the
quality evaluating function from available data (with possible
extension to the massive web data, as a result of the recent trends
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of innovative use of visual content in the Internet as the ground
truth of visual analysis [200]). As another dimension of develop-
ment, metrics can be built for a specific codec (e.g., H.264, SVC)
or application (e.g., mobile communication and hand-held devices)
by incorporating the proper domain knowledge in the model. In
addition, there is a call for new methodology to assess perceptual
quality of IPTV, HDTV, 3D and multi-view data, with the progress
in the related technology [6,44,96,103], since most of the existing
metrics are for standard-definition and single-view visual data.
We have also discussed the opportunities in visual attention, fea-
ture pooling, viewing condition handling, and computer graphics
and animation in more details with Section 4.3.
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